Automatic Differentiation
 
Loading...
Searching...
No Matches
log_rising_factorial.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_PRIM_FUN_LOG_RISING_FACTORIAL_HPP
2#define STAN_MATH_PRIM_FUN_LOG_RISING_FACTORIAL_HPP
3
10
11namespace stan {
12namespace math {
13
52template <typename T1, typename T2, require_all_arithmetic_t<T1, T2>* = nullptr>
53inline return_type_t<T1, T2> log_rising_factorial(const T1& x, const T2& n) {
54 if (is_any_nan(x, n)) {
55 return NOT_A_NUMBER;
56 }
57 static constexpr const char* function = "log_rising_factorial";
58 check_positive(function, "first argument", x);
59 return lgamma(x + n) - lgamma(x);
60}
61
72template <typename T1, typename T2, require_any_container_t<T1, T2>* = nullptr>
73inline auto log_rising_factorial(const T1& a, const T2& b) {
74 return apply_scalar_binary(a, b, [&](const auto& c, const auto& d) {
75 return log_rising_factorial(c, d);
76 });
77}
78
79} // namespace math
80} // namespace stan
81
82#endif
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
fvar< T > log_rising_factorial(const fvar< T > &x, const fvar< T > &n)
static constexpr double NOT_A_NUMBER
(Quiet) not-a-number value.
Definition constants.hpp:56
fvar< T > lgamma(const fvar< T > &x)
Return the natural logarithm of the gamma function applied to the specified argument.
Definition lgamma.hpp:21
void check_positive(const char *function, const char *name, const T_y &y)
Check if y is positive.
auto apply_scalar_binary(const T1 &x, const T2 &y, const F &f)
Base template function for vectorization of binary scalar functions defined by applying a functor to ...
bool is_any_nan(const T &x)
Returns true if the input is NaN and false otherwise.
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...