1#ifndef STAN_MATH_PRIM_FUN_LDEXP_HPP
2#define STAN_MATH_PRIM_FUN_LDEXP_HPP
20template <
typename T1, require_arithmetic_t<T1>* =
nullptr>
21inline double ldexp(T1 a,
int b) {
36template <
typename T1,
typename T2, require_any_container_t<T1, T2>* =
nullptr,
37 require_all_not_nonscalar_prim_or_rev_kernel_expression_t<
39inline auto ldexp(
const T1& a,
const T2& b) {
41 a, b, [&](
const auto& c,
const auto& d) {
return ldexp(c, d); });
fvar< T > ldexp(const fvar< T > &a, int b)
Returns the product of a (the significand) times 2 to power b (the exponent).
auto apply_scalar_binary(const T1 &x, const T2 &y, const F &f)
Base template function for vectorization of binary scalar functions defined by applying a functor to ...
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...