1#ifndef STAN_MATH_PRIM_FUN_LDEXP_HPP
2#define STAN_MATH_PRIM_FUN_LDEXP_HPP
20template <
typename T1, require_arithmetic_t<T1>* =
nullptr>
21inline double ldexp(T1 a,
int b) {
36template <
typename T1,
typename T2, require_any_container_t<T1, T2>* =
nullptr,
37 require_all_not_nonscalar_prim_or_rev_kernel_expression_t<
39inline auto ldexp(T1&& a, T2&& b) {
41 [](
auto&& c,
auto&& d) {
42 return ldexp(std::forward<
decltype(c)>(c),
43 std::forward<
decltype(d)>(d));
45 std::forward<T1>(a), std::forward<T2>(b));
auto apply_scalar_binary(F &&f, T1 &&x, T2 &&y)
Base template function for vectorization of binary scalar functions defined by applying a functor to ...
fvar< T > ldexp(const fvar< T > &a, int b)
Returns the product of a (the significand) times 2 to power b (the exponent).
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...