1#ifndef STAN_MATH_PRIM_FUN_GRAD_INC_BETA_HPP
2#define STAN_MATH_PRIM_FUN_GRAD_INC_BETA_HPP
30 double C =
exp(a * c1 + b * c2) / a;
36 std::forward_as_tuple(dF1, dF2, dF3, dFz)
37 = grad_2F1<true>(a + b, 1.0, a + 1, z);
39 g1 =
fma((c1 -
inv(a)), c3, C * (dF1 + dF3));
40 g2 =
fma(c2, c3, C * dF1);
fvar< T > log(const fvar< T > &x)
void grad_inc_beta(fvar< T > &g1, fvar< T > &g2, fvar< T > a, fvar< T > b, fvar< T > z)
Gradient of the incomplete beta function beta(a, b, z) with respect to the first two arguments.
fvar< T > inc_beta(const fvar< T > &a, const fvar< T > &b, const fvar< T > &x)
fvar< T > log1m(const fvar< T > &x)
fvar< T > beta(const fvar< T > &x1, const fvar< T > &x2)
Return fvar with the beta function applied to the specified arguments and its gradient.
fvar< T > inv(const fvar< T > &x)
fvar< return_type_t< T1, T2, T3 > > fma(const fvar< T1 > &x1, const fvar< T2 > &x2, const fvar< T3 > &x3)
The fused multiply-add operation (C99).
fvar< T > exp(const fvar< T > &x)
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...