Automatic Differentiation
 
Loading...
Searching...
No Matches
floor.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_PRIM_FUN_FLOOR_HPP
2#define STAN_MATH_PRIM_FUN_FLOOR_HPP
3
8#include <cmath>
9
10namespace stan {
11namespace math {
12
13template <typename T, require_arithmetic_t<T>* = nullptr>
14inline auto floor(T&& x) {
15 return std::floor(x);
16}
17
18template <typename T, require_complex_bt<std::is_arithmetic, T>* = nullptr>
19inline auto floor(T&& x) {
20 return std::floor(x);
21}
29struct floor_fun {
30 template <typename T>
31 static inline auto fun(T&& x) {
32 return floor(std::forward<T>(x));
33 }
34};
35
44template <typename Container, require_ad_container_t<Container>* = nullptr>
45inline auto floor(Container&& x) {
47 std::forward<Container>(x));
48}
49
58template <typename Container,
61inline auto floor(Container&& x) {
63 std::forward<Container>(x), [](auto&& v) { return v.array().floor(); });
64}
65
66} // namespace math
67} // namespace stan
68
69#endif
require_t< container_type_check_base< is_container, base_type_t, TypeCheck, Check... > > require_container_bt
Require type satisfies is_container.
require_not_t< is_var_matrix< std::decay_t< T > > > require_not_var_matrix_t
Require type does not satisfy is_var_matrix.
fvar< T > floor(const fvar< T > &x)
Definition floor.hpp:13
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Base template class for vectorization of unary scalar functions defined by a template class F to a sc...
static auto fun(T &&x)
Definition floor.hpp:31
Structure to wrap floor() so that it can be vectorized.
Definition floor.hpp:29