1#ifndef STAN_MATH_PRIM_FUN_COSH_HPP
2#define STAN_MATH_PRIM_FUN_COSH_HPP
22template <
typename T, require_arithmetic_t<T>* =
nullptr>
34template <
typename T, require_complex_bt<std::is_arithmetic, T>* =
nullptr>
35inline auto cosh(T&& x) {
48 static inline auto fun(T&& x) {
49 return cosh(std::forward<T>(x));
61template <
typename Container, require_ad_container_t<Container>* =
nullptr>
62inline auto cosh(Container&& x) {
64 std::forward<Container>(x));
75template <
typename Container,
77inline auto cosh(Container&& x) {
78 return apply_vector_unary<Container>::apply(
79 std::forward<Container>(x), [](
auto&& v) {
return v.array().
cosh(); });
92 return 0.5 * (
exp(z) +
exp(-z));
require_t< container_type_check_base< is_container, base_type_t, TypeCheck, Check... > > require_container_bt
Require type satisfies is_container.
std::complex< V > complex_cosh(const std::complex< V > &z)
Return the hyperbolic cosine of the complex argument.
fvar< T > cosh(const fvar< T > &x)
fvar< T > exp(const fvar< T > &x)
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Base template class for vectorization of unary scalar functions defined by a template class F to a sc...
Structure to wrap cosh() so it can be vectorized.