1#ifndef STAN_MATH_PRIM_FUN_ATAN_HPP
2#define STAN_MATH_PRIM_FUN_ATAN_HPP
24template <
typename T, require_arithmetic_t<T>* =
nullptr>
36template <
typename T, require_complex_bt<std::is_arithmetic, T>* =
nullptr>
37inline auto atan(T&& x) {
50 static inline auto fun(T&& x) {
51 return atan(std::forward<T>(x));
63template <
typename Container, require_ad_container_t<Container>* =
nullptr>
64inline auto atan(Container&& x) {
66 std::forward<Container>(x));
77template <
typename Container,
79inline auto atan(Container&& x) {
80 return apply_vector_unary<Container>::apply(
81 std::forward<Container>(x), [](
auto&& v) {
return v.array().
atan(); });
require_t< container_type_check_base< is_container, base_type_t, TypeCheck, Check... > > require_container_bt
Require type satisfies is_container.
std::complex< V > complex_atan(const std::complex< V > &z)
Return the arc tangent of the complex argument.
std::complex< T > i_times(const std::complex< T > &z)
Return the specified complex number multiplied by i.
std::complex< T > neg_i_times(const std::complex< T > &z)
Return the specified complex number multiplied by -i.
fvar< T > atanh(const fvar< T > &x)
Return inverse hyperbolic tangent of specified value.
fvar< T > atan(const fvar< T > &x)
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Base template class for vectorization of unary scalar functions defined by a template class F to a sc...
Structure to wrap atan() so it can be vectorized.