1#ifndef STAN_MATH_PRIM_FUN_ASIN_HPP
2#define STAN_MATH_PRIM_FUN_ASIN_HPP
28 static inline auto fun(
const T& x) {
42template <
typename Container,
46 Container>* =
nullptr>
47inline auto asin(
const Container& x) {
59template <
typename Container,
61inline auto asin(
const Container& x) {
63 x, [](
const auto& v) {
return v.array().
asin(); });
require_not_t< container_type_check_base< is_container, scalar_type_t, TypeCheck, Check... > > require_not_container_st
Require type does not satisfy is_container.
require_t< container_type_check_base< is_container, scalar_type_t, TypeCheck, Check... > > require_container_st
Require type satisfies is_container.
require_all_not_t< is_nonscalar_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_not_nonscalar_prim_or_rev_kernel_expression_t
Require none of the types satisfy is_nonscalar_prim_or_rev_kernel_expression.
require_not_t< is_var_matrix< std::decay_t< T > > > require_not_var_matrix_t
Require type does not satisfy is_var_matrix.
std::complex< V > complex_asin(const std::complex< V > &z)
Return the arc sine of the complex argument.
double copysign(double a, double_d b)
double value_of_rec(const fvar< T > &v)
Return the value of the specified variable.
std::complex< T > i_times(const std::complex< T > &z)
Return the specified complex number multiplied by i.
std::complex< T > neg_i_times(const std::complex< T > &z)
Return the specified complex number multiplied by -i.
fvar< T > asinh(const fvar< T > &x)
fvar< T > asin(const fvar< T > &x)
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Base template class for vectorization of unary scalar functions defined by a template class F to a sc...
static auto fun(const T &x)
Structure to wrap asin() so it can be vectorized.