Automatic Differentiation
 
Loading...
Searching...
No Matches
dot_self.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_OPENCL_REV_DOT_SELF_HPP
2#define STAN_MATH_OPENCL_REV_DOT_SELF_HPP
3#ifdef STAN_OPENCL
4
8
9namespace stan {
10namespace math {
11
19template <typename T,
20 require_all_kernel_expressions_and_none_scalar_t<T>* = nullptr>
21inline var dot_self(const var_value<T>& v) {
22 return make_callback_var(dot_self(v.val()), [v](vari& res) mutable {
23 v.adj() += 2.0 * res.adj() * v.val();
24 });
25}
26
27} // namespace math
28} // namespace stan
29
30#endif
31#endif
var_value< plain_type_t< T > > make_callback_var(T &&value, F &&functor)
Creates a new var initialized with a callback_vari with a given value and reverse-pass callback funct...
auto dot_self(const T &a)
Returns squared norm of a vector or matrix.
Definition dot_self.hpp:21
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...