Automatic Differentiation
 
Loading...
Searching...
No Matches
Phi_approx.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_OPENCL_REV_PHI_APPROX_HPP
2#define STAN_MATH_OPENCL_REV_PHI_APPROX_HPP
3#ifdef STAN_OPENCL
4
8
9namespace stan {
10namespace math {
11
18template <typename T,
19 require_all_kernel_expressions_and_none_scalar_t<T>* = nullptr>
21 return make_callback_var(
22 Phi_approx(A.val()), [A](vari_value<matrix_cl<double>>& res) mutable {
23 A.adj() += elt_multiply(
24 elt_multiply(elt_multiply(res.adj(), res.val()), 1 - res.val()),
25 3.0 * 0.07056 * square(A.val()) + 1.5976);
26 });
27}
28
29} // namespace math
30} // namespace stan
31
32#endif
33#endif
Represents an arithmetic matrix on the OpenCL device.
Definition matrix_cl.hpp:47
var_value< plain_type_t< T > > make_callback_var(T &&value, F &&functor)
Creates a new var initialized with a callback_vari with a given value and reverse-pass callback funct...
fvar< T > Phi_approx(const fvar< T > &x)
Return an approximation of the unit normal cumulative distribution function (CDF).
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...