Automatic Differentiation
 
Loading...
Searching...
No Matches
Phi_approx.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_FWD_FUN_PHI_APPROX_HPP
2#define STAN_MATH_FWD_FUN_PHI_APPROX_HPP
3
7#include <cmath>
8
9namespace stan {
10namespace math {
11
22template <typename T>
23inline fvar<T> Phi_approx(const fvar<T>& x) {
24 using std::pow;
25 return inv_logit(0.07056 * pow(x, 3.0) + 1.5976 * x);
26}
27
28} // namespace math
29} // namespace stan
30#endif
auto pow(const T1 &x1, const T2 &x2)
Definition pow.hpp:32
fvar< T > Phi_approx(const fvar< T > &x)
Return an approximation of the unit normal cumulative distribution function (CDF).
fvar< T > inv_logit(const fvar< T > &x)
Returns the inverse logit function applied to the argument.
Definition inv_logit.hpp:20
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
This template class represents scalars used in forward-mode automatic differentiation,...
Definition fvar.hpp:40