1#ifndef STAN_MATH_OPENCL_PRIM_UNIFORM_CDF_HPP
2#define STAN_MATH_OPENCL_PRIM_UNIFORM_CDF_HPP
29template <
typename T_y_cl,
typename T_low_cl,
typename T_high_cl,
31 T_high_cl>* =
nullptr,
32 require_any_not_stan_scalar_t<T_y_cl, T_low_cl, T_high_cl>* =
nullptr>
34 const T_y_cl& y,
const T_low_cl& alpha,
const T_high_cl&
beta) {
35 static constexpr const char* function =
"uniform_cdf(OpenCL)";
41 alpha,
"Scale parameter",
beta);
52 const auto& alpha_val =
value_of(alpha_col);
53 const auto& beta_val =
value_of(beta_col);
56 =
check_cl(function,
"Random variable", y_val,
"not NaN");
57 auto y_not_nan_expr = !isnan(y_val);
58 auto check_alpha_finite
59 =
check_cl(function,
"Lower bound parameter", alpha_val,
"finite");
60 auto alpha_finite_expr =
isfinite(alpha_val);
61 auto check_beta_finite
62 =
check_cl(function,
"Upper bound parameter", beta_val,
"finite");
63 auto beta_finite_expr =
isfinite(beta_val);
64 auto b_minus_a = beta_val - alpha_val;
66 function,
"Difference between upper and lower bound parameters", beta_val,
68 auto diff_positive_expr = b_minus_a > 0.0;
70 auto any_y_out_of_bounds
71 =
colwise_max(cast<char>(y_val < alpha_val || y_val > beta_val));
72 auto cdf_n =
elt_divide(y_val - alpha_val, b_minus_a);
76 auto y_deriv1 =
elt_divide(high_deriv1, cdf_n);
86 results(check_y_not_nan, check_alpha_finite, check_beta_finite,
87 check_diff_positive, any_y_out_of_bounds_cl, cdf_cl, y_deriv_cl,
88 alpha_deriv_cl, beta_deriv_cl)
89 =
expressions(y_not_nan_expr, alpha_finite_expr, beta_finite_expr,
90 diff_positive_expr, any_y_out_of_bounds, cdf_expr,
91 calc_if<is_autodiff_v<T_y_cl>>(y_deriv1),
92 calc_if<is_autodiff_v<T_low_cl>>(low_deriv1),
93 calc_if<is_autodiff_v<T_high_cl>>(high_deriv1));
101 auto alpha_deriv = alpha_deriv_cl * cdf;
102 auto y_deriv = y_deriv_cl * cdf;
103 auto beta_deriv = beta_deriv_cl * -cdf;
105 results(alpha_deriv_cl, y_deriv_cl, beta_deriv_cl)
107 calc_if<is_autodiff_v<T_y_cl>>(y_deriv),
108 calc_if<is_autodiff_v<T_high_cl>>(beta_deriv));
112 if constexpr (is_autodiff_v<T_y_cl>) {
113 partials<0>(ops_partials) = std::move(y_deriv_cl);
115 if constexpr (is_autodiff_v<T_low_cl>) {
116 partials<1>(ops_partials) = std::move(alpha_deriv_cl);
118 if constexpr (is_autodiff_v<T_high_cl>) {
119 partials<2>(ops_partials) = std::move(beta_deriv_cl);
121 return ops_partials.build(cdf);
Represents an arithmetic matrix on the OpenCL device.
elt_multiply_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_multiply(T_a &&a, T_b &&b)
isfinite_< as_operation_cl_t< T > > isfinite(T &&a)
auto check_cl(const char *function, const char *var_name, T &&y, const char *must_be)
Constructs a check on opencl matrix or expression.
results_cl< T_results... > results(T_results &&... results)
Deduces types for constructing results_cl object.
auto as_column_vector_or_scalar(T &&a)
as_column_vector_or_scalar of a kernel generator expression.
auto colwise_prod(T &&a)
Column wise product - reduction of a kernel generator expression.
elt_divide_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_divide(T_a &&a, T_b &&b)
auto colwise_max(T &&a)
Column wise max - reduction of a kernel generator expression.
calc_if_< true, as_operation_cl_t< T > > calc_if(T &&a)
expressions_cl< T_expressions... > expressions(T_expressions &&... expressions)
Deduces types for constructing expressions_cl object.
return_type_t< T_y_cl, T_low_cl, T_high_cl > uniform_cdf(const T_y_cl &y, const T_low_cl &alpha, const T_high_cl &beta)
Returns the uniform cumulative distribution function for the given location, and scale.
auto from_matrix_cl(const T &src)
Copies the source matrix that is stored on the OpenCL device to the destination Eigen matrix.
require_all_t< is_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_prim_or_rev_kernel_expression_t
Require type satisfies is_prim_or_rev_kernel_expression.
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
value_type_t< T > prod(const T &m)
Calculates product of given kernel generator expression elements.
T value_of(const fvar< T > &v)
Return the value of the specified variable.
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
fvar< T > beta(const fvar< T > &x1, const fvar< T > &x2)
Return fvar with the beta function applied to the specified arguments and its gradient.
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
bool isnan(const stan::math::var &a)
Checks if the given number is NaN.