1#ifndef STAN_MATH_OPENCL_PRIM_LOGISTIC_LCDF_HPP 
    2#define STAN_MATH_OPENCL_PRIM_LOGISTIC_LCDF_HPP 
   30    typename T_y_cl, 
typename T_loc_cl, 
typename T_scale_cl,
 
   32                                                T_scale_cl>* = 
nullptr,
 
   33    require_any_not_stan_scalar_t<T_y_cl, T_loc_cl, T_scale_cl>* = 
nullptr>
 
   35    const T_y_cl& y, 
const T_loc_cl& mu, 
const T_scale_cl& sigma) {
 
   36  static constexpr const char* function = 
"logistic_lcdf(OpenCL)";
 
   42                         mu, 
"Scale parameter", sigma);
 
   43  const size_t N = 
max_size(y, mu, sigma);
 
   53  const auto& mu_val = 
value_of(mu_col);
 
   54  const auto& sigma_val = 
value_of(sigma_col);
 
   57      = 
check_cl(function, 
"Random variable", y_val, 
"not NaN");
 
   58  auto y_not_nan_expr = !isnan(y_val);
 
   60      = 
check_cl(function, 
"Location parameter", mu_val, 
"finite");
 
   61  auto mu_finite_expr = 
isfinite(mu_val);
 
   62  auto check_sigma_positive_finite
 
   63      = 
check_cl(function, 
"Scale parameter", sigma_val, 
"positive finite");
 
   64  auto sigma_positive_finite_expr = 0 < sigma_val && 
isfinite(sigma_val);
 
   67  auto cond = y_val == 
INFTY;
 
   69  auto mu_minus_y_div_sigma = 
elt_multiply(mu_val - y_val, inv_sigma);
 
   70  auto exp_scaled_diff = 
exp(mu_minus_y_div_sigma);
 
   71  auto Pn = 
elt_divide(1.0, 1.0 + exp_scaled_diff);
 
   75      exp(mu_minus_y_div_sigma - 
log(sigma_val) - 2.0 * 
log1p(exp_scaled_diff)),
 
   77  auto mu_deriv = -y_deriv;
 
   78  auto sigma_deriv = 
elt_multiply(y_deriv, mu_minus_y_div_sigma);
 
   86  results(check_y_not_nan, check_mu_finite, check_sigma_positive_finite,
 
   87          any_y_neg_inf_cl, P_cl, y_deriv_cl, mu_deriv_cl, sigma_deriv_cl)
 
   88      = 
expressions(y_not_nan_expr, mu_finite_expr, sigma_positive_finite_expr,
 
   89                    any_y_neg_inf, P_expr,
 
   90                    calc_if<is_autodiff_v<T_y_cl>>(y_deriv),
 
   91                    calc_if<is_autodiff_v<T_loc_cl>>(mu_deriv),
 
   92                    calc_if<is_autodiff_v<T_scale_cl>>(sigma_deriv));
 
  102  if constexpr (is_autodiff_v<T_y_cl>) {
 
  103    partials<0>(ops_partials) = std::move(y_deriv_cl);
 
  105  if constexpr (is_autodiff_v<T_loc_cl>) {
 
  106    partials<1>(ops_partials) = std::move(mu_deriv_cl);
 
  108  if constexpr (is_autodiff_v<T_scale_cl>) {
 
  109    partials<2>(ops_partials) = std::move(sigma_deriv_cl);
 
  111  return ops_partials.build(P);
 
Represents an arithmetic matrix on the OpenCL device.
 
elt_multiply_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_multiply(T_a &&a, T_b &&b)
 
isfinite_< as_operation_cl_t< T > > isfinite(T &&a)
 
auto check_cl(const char *function, const char *var_name, T &&y, const char *must_be)
Constructs a check on opencl matrix or expression.
 
results_cl< T_results... > results(T_results &&... results)
Deduces types for constructing results_cl object.
 
auto as_column_vector_or_scalar(T &&a)
as_column_vector_or_scalar of a kernel generator expression.
 
elt_divide_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_divide(T_a &&a, T_b &&b)
 
auto colwise_max(T &&a)
Column wise max - reduction of a kernel generator expression.
 
calc_if_< true, as_operation_cl_t< T > > calc_if(T &&a)
 
auto colwise_sum(T &&a)
Column wise sum - reduction of a kernel generator expression.
 
expressions_cl< T_expressions... > expressions(T_expressions &&... expressions)
Deduces types for constructing expressions_cl object.
 
return_type_t< T_y_cl, T_loc_cl, T_scale_cl > logistic_lcdf(const T_y_cl &y, const T_loc_cl &mu, const T_scale_cl &sigma)
Returns the logistic cumulative distribution function for the given location, and scale.
 
auto from_matrix_cl(const T &src)
Copies the source matrix that is stored on the OpenCL device to the destination Eigen matrix.
 
require_all_t< is_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_prim_or_rev_kernel_expression_t
Require type satisfies is_prim_or_rev_kernel_expression.
 
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
 
T value_of(const fvar< T > &v)
Return the value of the specified variable.
 
fvar< T > log(const fvar< T > &x)
 
static constexpr double NEGATIVE_INFTY
Negative infinity.
 
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
 
fvar< T > log1p(const fvar< T > &x)
 
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
 
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
 
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
 
static constexpr double INFTY
Positive infinity.
 
fvar< T > exp(const fvar< T > &x)
 
typename partials_return_type< Args... >::type partials_return_t
 
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
 
bool isnan(const stan::math::var &a)
Checks if the given number is NaN.