1#ifndef STAN_MATH_OPENCL_PRIM_EXPONENTIAL_LCDF_HPP 
    2#define STAN_MATH_OPENCL_PRIM_EXPONENTIAL_LCDF_HPP 
   29template <
typename T_y_cl, 
typename T_inv_scale_cl,
 
   31              T_y_cl, T_inv_scale_cl>* = 
nullptr,
 
   32          require_any_not_stan_scalar_t<T_y_cl, T_inv_scale_cl>* = 
nullptr>
 
   34    const T_y_cl& y, 
const T_inv_scale_cl& 
beta) {
 
   35  static constexpr const char* function = 
"exponential_lcdf(OpenCL)";
 
   41                         "Inverse scale parameter", 
beta);
 
   51  const auto& beta_val = 
value_of(beta_col);
 
   53  auto check_y_nonnegative
 
   54      = 
check_cl(function, 
"Random variable", y_val, 
"nonnegative");
 
   55  auto y_nonnegative_expr = y_val >= 0.0;
 
   56  auto check_beta_positive_finite = 
check_cl(
 
   57      function, 
"Inverse scale parameter", beta_val, 
"positive finite");
 
   58  auto beta_positive_finite_expr = 0.0 < beta_val && 
isfinite(beta_val);
 
   63  auto rep_deriv = 
elt_divide(exp_val, 1.0 - exp_val);
 
   71  results(check_y_nonnegative, check_beta_positive_finite, lcdf_cl, y_deriv_cl,
 
   73      = 
expressions(y_nonnegative_expr, beta_positive_finite_expr, lcdf_expr,
 
   74                    calc_if<is_autodiff_v<T_y_cl>>(y_deriv),
 
   75                    calc_if<is_autodiff_v<T_inv_scale_cl>>(beta_deriv));
 
   81  if constexpr (is_autodiff_v<T_y_cl>) {
 
   82    partials<0>(ops_partials) = std::move(y_deriv);
 
   84  if constexpr (is_autodiff_v<T_inv_scale_cl>) {
 
   85    partials<1>(ops_partials) = std::move(beta_deriv);
 
   87  return ops_partials.build(lcdf);
 
Represents an arithmetic matrix on the OpenCL device.
 
elt_multiply_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_multiply(T_a &&a, T_b &&b)
 
isfinite_< as_operation_cl_t< T > > isfinite(T &&a)
 
auto check_cl(const char *function, const char *var_name, T &&y, const char *must_be)
Constructs a check on opencl matrix or expression.
 
results_cl< T_results... > results(T_results &&... results)
Deduces types for constructing results_cl object.
 
auto as_column_vector_or_scalar(T &&a)
as_column_vector_or_scalar of a kernel generator expression.
 
elt_divide_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_divide(T_a &&a, T_b &&b)
 
calc_if_< true, as_operation_cl_t< T > > calc_if(T &&a)
 
auto colwise_sum(T &&a)
Column wise sum - reduction of a kernel generator expression.
 
expressions_cl< T_expressions... > expressions(T_expressions &&... expressions)
Deduces types for constructing expressions_cl object.
 
return_type_t< T_y_cl, T_inv_scale_cl > exponential_lcdf(const T_y_cl &y, const T_inv_scale_cl &beta)
Calculates the log exponential cumulative distribution function for the given y and beta.
 
auto from_matrix_cl(const T &src)
Copies the source matrix that is stored on the OpenCL device to the destination Eigen matrix.
 
require_all_t< is_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_prim_or_rev_kernel_expression_t
Require type satisfies is_prim_or_rev_kernel_expression.
 
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
 
T value_of(const fvar< T > &v)
Return the value of the specified variable.
 
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
 
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
 
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
 
fvar< T > log1m(const fvar< T > &x)
 
fvar< T > beta(const fvar< T > &x1, const fvar< T > &x2)
Return fvar with the beta function applied to the specified arguments and its gradient.
 
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
 
fvar< T > exp(const fvar< T > &x)
 
typename partials_return_type< Args... >::type partials_return_t
 
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
 
bool isnan(const stan::math::var &a)
Checks if the given number is NaN.