1#ifndef STAN_MATH_OPENCL_PRIM_BERNOULLI_LPMF_HPP
2#define STAN_MATH_OPENCL_PRIM_BERNOULLI_LPMF_HPP
29 bool propto,
typename T_n_cl,
typename T_prob_cl,
30 require_all_prim_or_rev_kernel_expression_t<T_n_cl, T_prob_cl>* =
nullptr,
31 require_any_not_stan_scalar_t<T_n_cl, T_prob_cl>* =
nullptr>
33 const T_prob_cl& theta) {
34 static constexpr const char* function =
"bernoulli_lpmf(OpenCL)";
40 "Probability parameter", theta);
50 const auto& theta_val =
value_of(theta_col);
52 T_partials_return logp(0.0);
55 auto check_n_bounded =
check_cl(function,
"n", n,
"in the interval [0, 1]");
56 auto n_bounded_expr = 0 <= n && n <= 1;
58 if (is_theta_vector) {
61 auto deriv_expr =
inv(theta_val +
select(n == 1, 0, -1));
63 auto check_theta_bounded =
check_cl(function,
"Probability parameter",
64 theta_val,
"in the interval [0, 1]");
65 auto theta_bounded_expr = 0 <= theta_val && theta_val <= 1;
70 results(logp_cl, deriv_cl, check_n_bounded, check_theta_bounded)
73 n_bounded_expr, theta_bounded_expr);
78 partials<0>(ops_partials) = deriv_cl;
85 results(n_sum_cl, check_n_bounded)
89 double theta_val_scal = forward_as<double>(theta_val);
91 logp = N *
log(theta_val_scal);
92 }
else if (n_sum == 0) {
93 logp = N *
log1m(theta_val_scal);
95 logp = n_sum *
log(theta_val_scal) + (N - n_sum) *
log1m(theta_val_scal);
98 double& edge1_partial = forward_as<internal::broadcast_array<double>>(
99 partials<0>(ops_partials))[0];
101 edge1_partial += N / theta_val_scal;
102 }
else if (n_sum == 0) {
103 edge1_partial += N / (theta_val_scal - 1);
106 += n_sum / theta_val_scal + (N - n_sum) / (theta_val_scal - 1);
110 return ops_partials.build(logp);
Represents an arithmetic matrix on the OpenCL device.
select_< as_operation_cl_t< T_condition >, as_operation_cl_t< T_then >, as_operation_cl_t< T_else > > select(T_condition &&condition, T_then &&then, T_else &&els)
Selection operation on kernel generator expressions.
auto check_cl(const char *function, const char *var_name, T &&y, const char *must_be)
Constructs a check on opencl matrix or expression.
results_cl< T_results... > results(T_results &&... results)
Deduces types for constructing results_cl object.
auto as_column_vector_or_scalar(T &&a)
as_column_vector_or_scalar of a kernel generator expression.
auto rowwise_sum(T &&a)
Rowwise sum reduction of a kernel generator expression.
calc_if_< true, as_operation_cl_t< T > > calc_if(T &&a)
auto colwise_sum(T &&a)
Column wise sum - reduction of a kernel generator expression.
expressions_cl< T_expressions... > expressions(T_expressions &&... expressions)
Deduces types for constructing expressions_cl object.
return_type_t< T_prob_cl > bernoulli_lpmf(const T_n_cl &n, const T_prob_cl &theta)
Returns the log PMF of the Bernoulli distribution.
auto from_matrix_cl(const T &src)
Copies the source matrix that is stored on the OpenCL device to the destination Eigen matrix.
T_actual && forward_as(T_actual &&a)
Assume which type we get.
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
int64_t size(const T &m)
Returns the size (number of the elements) of a matrix_cl or var_value<matrix_cl<T>>.
T value_of(const fvar< T > &v)
Return the value of the specified variable.
fvar< T > log(const fvar< T > &x)
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
fvar< T > log1p(const fvar< T > &x)
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
fvar< T > log1m(const fvar< T > &x)
fvar< T > inv(const fvar< T > &x)
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Checks if decayed type is a var, fvar, or arithmetic.
Extends std::true_type when instantiated with zero or more template parameters, all of which extend t...
Template metaprogram to calculate whether a summand needs to be included in a proportional (log) prob...