Stan Math Library
5.0.0
Automatic Differentiation
Loading...
Searching...
No Matches
neg_binomial_2_cdf_log.hpp
Go to the documentation of this file.
1
#ifndef STAN_MATH_PRIM_PROB_NEG_BINOMIAL_2_CDF_LOG_HPP
2
#define STAN_MATH_PRIM_PROB_NEG_BINOMIAL_2_CDF_LOG_HPP
3
4
#include <
stan/math/prim/meta.hpp
>
5
#include <
stan/math/prim/prob/neg_binomial_2_lcdf.hpp
>
6
7
namespace
stan
{
8
namespace
math {
9
13
template
<
typename
T_n,
typename
T_location,
typename
T_precision>
14
return_type_t<T_location, T_precision>
neg_binomial_2_cdf_log
(
15
const
T_n& n,
const
T_location& mu,
const
T_precision& phi) {
16
return
neg_binomial_2_lcdf<T_n, T_location, T_precision>(n, mu, phi);
17
}
18
19
}
// namespace math
20
}
// namespace stan
21
#endif
stan::math::neg_binomial_2_cdf_log
return_type_t< T_location, T_precision > neg_binomial_2_cdf_log(const T_n &n, const T_location &mu, const T_precision &phi)
Definition
neg_binomial_2_cdf_log.hpp:14
stan::return_type_t
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
Definition
return_type.hpp:218
stan
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Definition
unit_vector_constrain.hpp:15
neg_binomial_2_lcdf.hpp
meta.hpp
stan
math
prim
prob
neg_binomial_2_cdf_log.hpp
[
Stan Home Page
]
© 2011–2019, Stan Development Team.