Automatic Differentiation
 
Loading...
Searching...
No Matches

◆ stochastic_column_constrain() [4/6]

template<bool Jacobian, typename T , require_std_vector_t< T > * = nullptr>
auto stan::math::stochastic_column_constrain ( const T &  y,
return_type_t< T > &  lp 
)
inline

Return a vector of column stochastic matrices.

If the Jacobian parameter is true, the log density accumulator is incremented with the log absolute Jacobian determinant of the transform. All of the transforms are specified with their Jacobians in the Stan Reference Manual chapter Constraint Transforms.

Template Parameters
Jacobianif true, increment log density accumulator with log absolute Jacobian determinant of constraining transform
TA standard vector with inner type inheriting from Eigen::DenseBase or a var_value with inner type inheriting from Eigen::DenseBase with compile time dynamic rows and dynamic columns
Parameters
[in]yfree vector
[in,out]lplog density accumulator
Returns
Standard vector containing matrices with simplex columns of dimensionality (K, M).

Definition at line 105 of file stochastic_column_constrain.hpp.