Automatic Differentiation
 
Loading...
Searching...
No Matches

◆ read_cov_L() [1/2]

template<typename T_CPCs , typename T_sds , require_all_eigen_vector_t< T_CPCs, T_sds > * = nullptr, require_vt_same< T_CPCs, T_sds > * = nullptr>
Eigen::Matrix< value_type_t< T_CPCs >, Eigen::Dynamic, Eigen::Dynamic > stan::math::read_cov_L ( const T_CPCs &  CPCs,
const T_sds &  sds,
value_type_t< T_CPCs > &  log_prob 
)

This is the function that should be called prior to evaluating the density of any elliptical distribution.

Template Parameters
T_CPCstype of T_CPCs vector (must be derived from Eigen::ArrayBase and have one compile-time dimension equal to 1)
T_sdstype of sds vector (must be derived from Eigen::ArrayBase and have one compile-time dimension equal to 1)
Parameters
CPCson (-1, 1)
sdson (0, inf)
log_probthe log probability value to increment with the Jacobian
Returns
Cholesky factor of covariance matrix for specified partial correlations.

Definition at line 30 of file read_cov_L.hpp.