Stan Math Library
5.0.0
Automatic Differentiation
|
Eigen::Matrix< value_type_t< T >, Eigen::Dynamic, Eigen::Dynamic > stan::math::read_corr_L | ( | const T & | CPCs, |
size_t | K, | ||
value_type_t< T > & | log_prob | ||
) |
Return the Cholesky factor of the correlation matrix of the specified dimensionality corresponding to the specified canonical partial correlations, incrementing the specified scalar reference with the log absolute determinant of the Jacobian of the transformation.
The implementation is Ben Goodrich's Cholesky factor-based approach to the C-vine method of:
T | type of the array (must be derived from Eigen::ArrayBase and have one compile-time dimension equal to 1) |
CPCs | The (K choose 2) canonical partial correlations in (-1, 1). |
K | Dimensionality of correlation matrix. |
log_prob | Reference to variable to increment with the log Jacobian determinant. |
Definition at line 101 of file read_corr_L.hpp.