Automatic Differentiation
 
Loading...
Searching...
No Matches

◆ log_diff_exp() [5/10]

template<typename T_x , typename T_y , require_all_prim_or_rev_kernel_expression_t< T_x, T_y > * = nullptr, require_any_var_t< T_x, T_y > * = nullptr, require_any_not_stan_scalar_t< T_x, T_y > * = nullptr>
var_value< matrix_cl< double > > stan::math::log_diff_exp ( T_x &&  x,
T_y &&  y 
)
inline

Returns the natural logarithm of the difference of the natural exponentiation of x and the natural exponentiation of y.

Template Parameters
T_xtype of x argument
T_ytype of y argument
Parameters
xfirst argument
ysecond argument
Returns
Result the natural logarithm of the difference of the natural exponentiation of x and the natural exponentiation of y.

Definition at line 36 of file log_diff_exp.hpp.