Automatic Differentiation
 
Loading...
Searching...
No Matches

◆ stochastic_column_constrain() [3/6]

template<bool Jacobian, typename Mat , require_not_std_vector_t< Mat > * = nullptr>
plain_type_t< Mat > stan::math::stochastic_column_constrain ( const Mat &  y,
return_type_t< Mat > &  lp 
)
inline

Return a column stochastic matrix.

If the Jacobian parameter is true, the log density accumulator is incremented with the log absolute Jacobian determinant of the transform. All of the transforms are specified with their Jacobians in the Stan Reference Manual chapter Constraint Transforms.

Template Parameters
Jacobianif true, increment log density accumulator with log absolute Jacobian determinant of constraining transform
Mattype of the Matrix
Parameters
yFree Matrix input of dimensionality (K - 1, M).
[in,out]lplog density accumulator
Returns
Matrix with simplex columns of dimensionality (K, M).

Definition at line 78 of file stochastic_column_constrain.hpp.