Stan Math Library
4.9.0
Automatic Differentiation
|
var_value< Eigen::MatrixXd > stan::math::cholesky_factor_constrain | ( | const T & | x, |
int | M, | ||
int | N, | ||
scalar_type_t< T > & | lp | ||
) |
Return the Cholesky factor of the specified size read from the specified vector and increment the specified log probability reference with the log Jacobian adjustment of the transform.
A total of (N choose 2) + N + N * (M - N) free parameters are required to read an M by N Cholesky factor.
T | type of input vector (must be a var_value<S> where S inherits from EigenBase) |
x | Vector of unconstrained values | |
M | number of rows | |
N | number of columns | |
[out] | lp | Log density that is incremented with the log Jacobian |
Definition at line 89 of file cholesky_factor_constrain.hpp.