Stan Math Library
4.9.0
Automatic Differentiation
|
|
inline |
Returns a Matern 3/2 covariance matrix.
\[ k(x, x') = \sigma^2(1 + \frac{\sqrt{3}d(x, x')}{l})exp(-\frac{\sqrt{3}d(x, x')}{l}) \]
where \( d(x, x') \) is the Euclidean distance.
T_x | type for each scalar |
T_s | type of parameter of sigma |
T_l | type of parameter length scale |
x | std::vector of scalars that can be used in squared distance |
length_scale | length scale |
sigma | marginal standard deviation or magnitude |
std::domain | error if sigma <= 0, l <= 0, or x is nan or inf |
Definition at line 39 of file gp_matern32_cov.hpp.