Automatic Differentiation
 
Loading...
Searching...
No Matches

◆ laplace_latent_poisson_log_rng()

template<typename CovarFun , typename CovarArgs , typename RNG , typename Mean >
Eigen::VectorXd stan::math::laplace_latent_poisson_log_rng ( const std::vector< int > &  y,
const std::vector< int > &  y_index,
Mean &&  mean,
CovarFun &&  covariance_function,
CovarArgs &&  covar_args,
RNG &  rng,
std::ostream *  msgs 
)
inline

In a latent gaussian model,.

theta ~ Normal(0, Sigma(phi)) y ~ p(y|theta,phi)

return a sample from the Laplace approximation to p(theta|y,phi). The Laplace approximation is computed using a Newton solver. In this specialized function, the likelihood p(y|theta) is a Poisson with a log link.

Template Parameters
Meantype of the mean of the latent normal distribution
CovarFunA functor with an operator()(CovarArgsElements..., {TrainTupleElements...| PredTupleElements...}) method. The operator() method should accept as arguments the inner elements of CovarArgs. The return type of the operator() method should be a type inheriting from Eigen::EigenBase with dynamic sized rows and columns.
CovarArgsA tuple of types to passed as the first arguments of CovarFun::operator()
RNGA valid boost rng type
Parameters
[in]yObserved counts.
[in]y_indexIndex indicating which group each observation belongs to.
[in]meanThe mean of the latent normal variable.
[in]covariance_functiona function which returns the prior covariance.
[in]covar_argsarguments for the covariance function.
[in,out]rngRandom number generator
[in,out]msgsstream for messages from likelihood and covariance

Definition at line 73 of file laplace_latent_poisson_log_rng.hpp.