Stan Math Library
5.0.0
Automatic Differentiation
|
FvarT stan::math::hypergeometric_1f0 | ( | const Ta & | a, |
const Tz & | z | ||
) |
Returns the Hypergeometric 1F0 function applied to the input arguments: \( _1F_0(a;;z) = \sum_{k=1}^{\infty}\frac{\left(a\right)_kz^k}{k!}\).
\( \frac{\partial _1F_0\left(a;;z\right)}{\partial a} = -\left(1-z\right)^{-a}\log\left(1 - z\right) \)
\( \frac{\partial _1F_0\left(a;;z\right)}{\partial z} = a\left(1-z\right)^{-a-1} \)
Ta | Fvar or arithmetic type of 'a' argument |
Tz | Fvar or arithmetic type of 'z' argument |
[in] | a | Scalar 'a' argument |
[in] | z | Scalar z argument |
Definition at line 34 of file hypergeometric_1F0.hpp.