Automatic Differentiation
 
Loading...
Searching...
No Matches

◆ stochastic_column_constrain() [2/7]

template<typename Mat , typename Lp , require_eigen_matrix_dynamic_t< Mat > * = nullptr, require_not_st_var< Mat > * = nullptr, require_convertible_t< value_type_t< Mat >, Lp > * = nullptr>
plain_type_t< Mat > stan::math::stochastic_column_constrain ( const Mat &  y,
Lp &  lp 
)
inline

Return a column stochastic matrix and increment the specified log probability reference with the log absolute Jacobian determinant of the transform.

The simplex transform is defined through a centered stick-breaking process.

Template Parameters
Mattype of the Matrix
LpA scalar type for the lp argument. The scalar type of Mat should be convertable to this.
Parameters
yFree Matrix input of dimensionality (K - 1, M)
lpLog probability reference to increment.
Returns
Matrix with stochastic columns of dimensionality (K, M)

Definition at line 56 of file stochastic_column_constrain.hpp.