Automatic Differentiation
 
Loading...
Searching...
No Matches
inv_gamma_cdf_log.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_PRIM_PROB_INV_GAMMA_CDF_LOG_HPP
2#define STAN_MATH_PRIM_PROB_INV_GAMMA_CDF_LOG_HPP
3
6
7namespace stan {
8namespace math {
9
13template <typename T_y, typename T_shape, typename T_scale>
15 const T_shape& alpha,
16 const T_scale& beta) {
17 return inv_gamma_lcdf<T_y, T_shape, T_scale>(y, alpha, beta);
18}
19
20} // namespace math
21} // namespace stan
22#endif
return_type_t< T_y, T_shape, T_scale > inv_gamma_cdf_log(const T_y &y, const T_shape &alpha, const T_scale &beta)
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
fvar< T > beta(const fvar< T > &x1, const fvar< T > &x2)
Return fvar with the beta function applied to the specified arguments and its gradient.
Definition beta.hpp:51
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...