Automatic Differentiation
 
Loading...
Searching...
No Matches

◆ wiener_lcdf_defective() [2/2]

template<bool propto = false, typename T_y , typename T_a , typename T_t0 , typename T_w , typename T_v , typename T_sv , typename T_sw , typename T_st0 >
auto stan::math::wiener_lcdf_defective ( const T_y &  y,
const T_a &  a,
const T_t0 &  t0,
const T_w &  w,
const T_v &  v,
const T_sv &  sv,
const T_sw &  sw,
const T_st0 &  st0,
const double &  precision_derivatives = 1e-8 
)
inline

Returns the log CDF of the Wiener distribution for a (Wiener) drift diffusion model with up to 7 parameters.

If containers are supplied, returns the log sum of the probabilities. See 'wiener_lpdf' for more comprehensive documentation If the reaction time goes to infinity, the CDF goes to the probability to hit the upper bound (instead of 1, as it is usually the case)

Template Parameters
T_ytype of reaction time
T_atype of boundary separation
T_t0type of non-decision time
T_wtype of relative starting point
T_vtype of drift rate
T_svtype of inter-trial variability of drift rate
T_swtype of inter-trial variability of relative starting point
T_st0type of inter-trial variability of non-decision time
Parameters
yThe reaction time in seconds
aThe boundary separation
t0The non-decision time
wThe relative starting point
vThe drift rate
svThe inter-trial variability of the drift rate
swThe inter-trial variability of the relative starting point
st0The inter-trial variability of the non-decision time
precision_derivativesLevel of precision in estimation of partial derivatives
Returns
log probability or log sum of probabilities for upper boundary responses
Exceptions
std::domain_errorif non-decision time t0 is greater than reaction time y.
std::domain_errorif 1-sw/2 is smaller than or equal to w.
std::domain_errorif sw/2 is larger than or equal to w.

References**

  • Blurton, S. P., Kesselmeier, M., & Gondan, M. (2017). The first-passage time distribution for the diffusion model with variable drift. Journal of Mathematical Psychology, 76, 7–12. https://doi.org/10.1016/j.jmp.2016.11.003
  • Foster, K., & Singmann, H. (2021). Another Approximation of the First-Passage Time Densities for the Ratcliff Diffusion Decision Model. arXiv preprint arXiv:2104.01902
  • Gondan, M., Blurton, S. P., & Kesselmeier, M. (2014). Even faster and even more accurate first-passage time densities and distributions for the Wiener diffusion model. Journal of Mathematical Psychology, 60, 20–22. https://doi.org/10.1016/j.jmp.2014.05.002
  • Hartmann, R., & Klauer, K. C. (2021). Partial derivatives for the first-passage time distribution in Wiener diffusion models. Journal of Mathematical Psychology, 103, 102550. https://doi.org/10.1016/j.jmp.2021.102550
  • Henrich, F., Hartmann, R., Pratz, V., Voss, A., & Klauer, K.C. (2023). The Seven-parameter Diffusion Model: An Implementation in Stan for Bayesian Analyses. Behavior Research Methods. https://doi.org/10.3758/s13428-023-02179-1
  • Henrich, F., & Klauer, K. C. (in press). Modeling Truncated and Censored Data With the Diffusion Model in Stan. Behavior Research Methods.
  • Linhart, J. M. (2008). Algorithm 885: Computing the Logarithm of the Normal Distribution. ACM Transactions on Mathematical Software. http://doi.acm.org/10.1145/1391989.1391993
  • Navarro, D. J., & Fuss, I. G. (2009). Fast and accurate calculations for first-passage times in Wiener diffusion models. Journal of Mathematical Psychology, 53(4), 222–230. https://doi.org/10.1016/j.jmp.2009.02.003

Definition at line 263 of file wiener_full_lcdf_defective.hpp.