1#ifndef STAN_MATH_FWD_FUN_QUAD_FORM_SYM_HPP
2#define STAN_MATH_FWD_FUN_QUAD_FORM_SYM_HPP
26template <
typename EigMat1,
typename EigMat2,
27 require_all_eigen_t<EigMat1, EigMat2>* =
nullptr,
28 require_not_eigen_col_vector_t<EigMat2>* =
nullptr,
29 require_any_vt_fvar<EigMat1, EigMat2>* =
nullptr>
31 const EigMat1& A,
const EigMat2& B) {
35 const auto& B_ref =
to_ref(B);
38 return T_ret(0.5) * (ret + ret.transpose());
53template <
typename EigMat,
typename ColVec, require_eigen_t<EigMat>* =
nullptr,
54 require_eigen_col_vector_t<ColVec>* =
nullptr,
55 require_any_vt_fvar<EigMat, ColVec>* =
nullptr>
60 const auto& B_ref =
to_ref(B);
void check_symmetric(const char *function, const char *name, const matrix_cl< T > &y)
Check if the matrix_cl is symmetric.
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
void check_multiplicable(const char *function, const char *name1, const T1 &y1, const char *name2, const T2 &y2)
Check if the matrices can be multiplied.
typename promote_scalar_type< std::decay_t< T >, std::decay_t< S > >::type promote_scalar_t
auto multiply(const Mat1 &m1, const Mat2 &m2)
Return the product of the specified matrices.
ref_type_t< T && > to_ref(T &&a)
This evaluates expensive Eigen expressions.
promote_scalar_t< return_type_t< EigMat1, EigMat2 >, EigMat2 > quad_form_sym(const EigMat1 &A, const EigMat2 &B)
Return the quadratic form of a symmetric matrix.
auto dot_product(const T_a &a, const T_b &b)
Returns the dot product of the specified vectors.
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...