Automatic Differentiation
 
Loading...
Searching...
No Matches
exponential_ccdf_log.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_PRIM_PROB_EXPONENTIAL_CCDF_LOG_HPP
2#define STAN_MATH_PRIM_PROB_EXPONENTIAL_CCDF_LOG_HPP
3
6
7namespace stan {
8namespace math {
9
13template <typename T_y, typename T_inv_scale>
15 const T_inv_scale& beta) {
16 return exponential_lccdf<T_y, T_inv_scale>(y, beta);
17}
18
19} // namespace math
20} // namespace stan
21#endif
return_type_t< T_y, T_inv_scale > exponential_ccdf_log(const T_y &y, const T_inv_scale &beta)
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
fvar< T > beta(const fvar< T > &x1, const fvar< T > &x2)
Return fvar with the beta function applied to the specified arguments and its gradient.
Definition beta.hpp:51
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...