Stan Math Library
5.0.0
Automatic Differentiation
Loading...
Searching...
No Matches
exp_mod_normal_ccdf_log.hpp
Go to the documentation of this file.
1
#ifndef STAN_MATH_PRIM_PROB_EXP_MOD_NORMAL_CCDF_LOG_HPP
2
#define STAN_MATH_PRIM_PROB_EXP_MOD_NORMAL_CCDF_LOG_HPP
3
4
#include <
stan/math/prim/meta.hpp
>
5
#include <
stan/math/prim/prob/exp_mod_normal_lccdf.hpp
>
6
7
namespace
stan
{
8
namespace
math {
9
13
template
<
typename
T_y,
typename
T_loc,
typename
T_scale,
typename
T_inv_scale>
14
return_type_t<T_y, T_loc, T_scale, T_inv_scale>
exp_mod_normal_ccdf_log
(
15
const
T_y& y,
const
T_loc& mu,
const
T_scale& sigma,
16
const
T_inv_scale& lambda) {
17
return
exp_mod_normal_lccdf<T_y, T_loc, T_scale, T_inv_scale>(y, mu, sigma,
18
lambda);
19
}
20
21
}
// namespace math
22
}
// namespace stan
23
#endif
stan::math::exp_mod_normal_ccdf_log
return_type_t< T_y, T_loc, T_scale, T_inv_scale > exp_mod_normal_ccdf_log(const T_y &y, const T_loc &mu, const T_scale &sigma, const T_inv_scale &lambda)
Definition
exp_mod_normal_ccdf_log.hpp:14
stan::return_type_t
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
Definition
return_type.hpp:218
stan
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Definition
unit_vector_constrain.hpp:15
meta.hpp
exp_mod_normal_lccdf.hpp
stan
math
prim
prob
exp_mod_normal_ccdf_log.hpp
[
Stan Home Page
]
© 2011–2019, Stan Development Team.