R/loo_model_weights.R
loo_model_weights.Rd
Model averaging via stacking of predictive distributions, pseudo-BMA weighting or pseudo-BMA+ weighting with the Bayesian bootstrap. See Yao et al. (2018), Vehtari, Gelman, and Gabry (2017), and Vehtari, Simpson, Gelman, Yao, and Gabry (2022) for background.
loo_model_weights(x, ...)
# S3 method for default
loo_model_weights(
x,
...,
method = c("stacking", "pseudobma"),
optim_method = "BFGS",
optim_control = list(),
BB = TRUE,
BB_n = 1000,
alpha = 1,
r_eff_list = NULL,
cores = getOption("mc.cores", 1)
)
stacking_weights(lpd_point, optim_method = "BFGS", optim_control = list())
pseudobma_weights(lpd_point, BB = TRUE, BB_n = 1000, alpha = 1)
A list of "psis_loo"
objects (objects returned by loo()
) or
pointwise log-likelihood matrices or , one for each model. If the list
elements are named the names will be used to label the models in the
results. Each matrix/object should have dimensions S by N,
where S is the size of the posterior sample (with all chains merged)
and N is the number of data points. If x
is a list of
log-likelihood matrices then loo()
is called internally on each matrix.
Currently the loo_model_weights()
function is not implemented to be used
with results from K-fold CV, but you can still obtain weights using K-fold
CV results by calling the stacking_weights()
function directly.
Unused, except for the generic to pass arguments to individual methods.
Either "stacking"
(the default) or "pseudobma"
, indicating which method
to use for obtaining the weights. "stacking"
refers to stacking of
predictive distributions and "pseudobma"
refers to pseudo-BMA+ weighting
(or plain pseudo-BMA weighting if argument BB
is FALSE
).
If method="stacking"
, a string passed to the method
argument of stats::constrOptim()
to specify the optimization algorithm.
The default is optim_method="BFGS"
, but other options are available (see
stats::optim()
).
If method="stacking"
, a list of control parameters for
optimization passed to the control
argument of stats::constrOptim()
.
Logical used when "method"
="pseudobma"
. If
TRUE
(the default), the Bayesian bootstrap will be used to adjust
the pseudo-BMA weighting, which is called pseudo-BMA+ weighting. It helps
regularize the weight away from 0 and 1, so as to reduce the variance.
For pseudo-BMA+ weighting only, the number of samples to use for
the Bayesian bootstrap. The default is BB_n=1000
.
Positive scalar shape parameter in the Dirichlet distribution
used for the Bayesian bootstrap. The default is alpha=1
, which
corresponds to a uniform distribution on the simplex space.
Optionally, a list of relative effective sample size
estimates for the likelihood (exp(log_lik))
of each observation in
each model. See psis()
and relative_eff()
helper
function for computing r_eff
. If x
is a list of "psis_loo"
objects then r_eff_list
is ignored.
The number of cores to use for parallelization. This defaults to
the option mc.cores
which can be set for an entire R session by
options(mc.cores = NUMBER)
. The old option loo.cores
is now
deprecated but will be given precedence over mc.cores
until
loo.cores
is removed in a future release. As of version
2.0.0 the default is now 1 core if mc.cores
is not set, but we
recommend using as many (or close to as many) cores as possible.
Note for Windows 10 users: it is strongly
recommended to avoid using
the .Rprofile
file to set mc.cores
(using the cores
argument or
setting mc.cores
interactively or in a script is fine).
If calling stacking_weights()
or pseudobma_weights()
directly, a matrix of pointwise leave-one-out (or K-fold) log likelihoods
evaluated for different models. It should be a N by K matrix
where N is sample size and K is the number of models. Each
column corresponds to one model. These values can be calculated
approximately using loo()
or by running exact leave-one-out or K-fold
cross-validation.
A numeric vector containing one weight for each model.
loo_model_weights()
is a wrapper around the stacking_weights()
and
pseudobma_weights()
functions that implements stacking, pseudo-BMA, and
pseudo-BMA+ weighting for combining multiple predictive distributions. We can
use approximate or exact leave-one-out cross-validation (LOO-CV) or K-fold CV
to estimate the expected log predictive density (ELPD).
The stacking method (method="stacking"
), which is the default for
loo_model_weights()
, combines all models by maximizing the leave-one-out
predictive density of the combination distribution. That is, it finds the
optimal linear combining weights for maximizing the leave-one-out log score.
The pseudo-BMA method (method="pseudobma"
) finds the relative weights
proportional to the ELPD of each model. However, when
method="pseudobma"
, the default is to also use the Bayesian bootstrap
(BB=TRUE
), which corresponds to the pseudo-BMA+ method. The Bayesian
bootstrap takes into account the uncertainty of finite data points and
regularizes the weights away from the extremes of 0 and 1.
In general, we recommend stacking for averaging predictive distributions, while pseudo-BMA+ can serve as a computationally easier alternative.
Vehtari, A., Gelman, A., and Gabry, J. (2017a). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing. 27(5), 1413--1432. doi:10.1007/s11222-016-9696-4 (journal version, preprint arXiv:1507.04544).
Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2022). Pareto smoothed importance sampling. preprint arXiv:1507.02646
Yao, Y., Vehtari, A., Simpson, D., and Gelman, A. (2018) Using stacking to average Bayesian predictive distributions. Bayesian Analysis, advance publication, doi:10.1214/17-BA1091. (online).
The loo package vignettes, particularly Bayesian Stacking and Pseudo-BMA weights using the loo package.
loo()
for details on leave-one-out ELPD estimation.
constrOptim()
for the choice of optimization methods and control-parameters.
relative_eff()
for computing r_eff
.
# \dontrun{
### Demonstrating usage after fitting models with RStan
library(rstan)
#> Loading required package: StanHeaders
#>
#> rstan version 2.32.6 (Stan version 2.32.2)
#> For execution on a local, multicore CPU with excess RAM we recommend calling
#> options(mc.cores = parallel::detectCores()).
#> To avoid recompilation of unchanged Stan programs, we recommend calling
#> rstan_options(auto_write = TRUE)
#> For within-chain threading using `reduce_sum()` or `map_rect()` Stan functions,
#> change `threads_per_chain` option:
#> rstan_options(threads_per_chain = 1)
# generate fake data from N(0,1).
N <- 100
y <- rnorm(N, 0, 1)
# Suppose we have three models: N(-1, sigma), N(0.5, sigma) and N(0.6,sigma).
stan_code <- "
data {
int N;
vector[N] y;
real mu_fixed;
}
parameters {
real<lower=0> sigma;
}
model {
sigma ~ exponential(1);
y ~ normal(mu_fixed, sigma);
}
generated quantities {
vector[N] log_lik;
for (n in 1:N) log_lik[n] = normal_lpdf(y[n]| mu_fixed, sigma);
}"
mod <- stan_model(model_code = stan_code)
fit1 <- sampling(mod, data=list(N=N, y=y, mu_fixed=-1))
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 1.1e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.11 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 0.012 seconds (Warm-up)
#> Chain 1: 0.011 seconds (Sampling)
#> Chain 1: 0.023 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 2e-06 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.02 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 0.011 seconds (Warm-up)
#> Chain 2: 0.011 seconds (Sampling)
#> Chain 2: 0.022 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 3).
#> Chain 3:
#> Chain 3: Gradient evaluation took 2e-06 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.02 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
#> Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
#> Chain 3: Elapsed Time: 0.011 seconds (Warm-up)
#> Chain 3: 0.016 seconds (Sampling)
#> Chain 3: 0.027 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 4).
#> Chain 4:
#> Chain 4: Gradient evaluation took 2e-06 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.02 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
#> Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 4: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 4: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 4: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 4: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 4: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 4: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 4: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 4: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 4: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
#> Chain 4: Elapsed Time: 0.014 seconds (Warm-up)
#> Chain 4: 0.01 seconds (Sampling)
#> Chain 4: 0.024 seconds (Total)
#> Chain 4:
fit2 <- sampling(mod, data=list(N=N, y=y, mu_fixed=0.5))
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 3e-06 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.03 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 0.014 seconds (Warm-up)
#> Chain 1: 0.015 seconds (Sampling)
#> Chain 1: 0.029 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 2.7e-05 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.27 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 0.012 seconds (Warm-up)
#> Chain 2: 0.014 seconds (Sampling)
#> Chain 2: 0.026 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 3).
#> Chain 3:
#> Chain 3: Gradient evaluation took 3e-06 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.03 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
#> Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
#> Chain 3: Elapsed Time: 0.015 seconds (Warm-up)
#> Chain 3: 0.016 seconds (Sampling)
#> Chain 3: 0.031 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 4).
#> Chain 4:
#> Chain 4: Gradient evaluation took 3e-06 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.03 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
#> Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 4: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 4: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 4: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 4: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 4: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 4: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 4: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 4: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 4: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
#> Chain 4: Elapsed Time: 0.02 seconds (Warm-up)
#> Chain 4: 0.015 seconds (Sampling)
#> Chain 4: 0.035 seconds (Total)
#> Chain 4:
fit3 <- sampling(mod, data=list(N=N, y=y, mu_fixed=0.6))
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 3e-06 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.03 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 0.012 seconds (Warm-up)
#> Chain 1: 0.011 seconds (Sampling)
#> Chain 1: 0.023 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 2e-06 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.02 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 0.016 seconds (Warm-up)
#> Chain 2: 0.012 seconds (Sampling)
#> Chain 2: 0.028 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 3).
#> Chain 3:
#> Chain 3: Gradient evaluation took 2e-06 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.02 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
#> Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
#> Chain 3: Elapsed Time: 0.016 seconds (Warm-up)
#> Chain 3: 0.013 seconds (Sampling)
#> Chain 3: 0.029 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 4).
#> Chain 4:
#> Chain 4: Gradient evaluation took 2e-06 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.02 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
#> Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 4: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 4: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 4: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 4: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 4: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 4: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 4: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 4: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 4: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
#> Chain 4: Elapsed Time: 0.012 seconds (Warm-up)
#> Chain 4: 0.016 seconds (Sampling)
#> Chain 4: 0.028 seconds (Total)
#> Chain 4:
model_list <- list(fit1, fit2, fit3)
log_lik_list <- lapply(model_list, extract_log_lik)
# optional but recommended
r_eff_list <- lapply(model_list, function(x) {
ll_array <- extract_log_lik(x, merge_chains = FALSE)
relative_eff(exp(ll_array))
})
# stacking method:
wts1 <- loo_model_weights(
log_lik_list,
method = "stacking",
r_eff_list = r_eff_list,
optim_control = list(reltol=1e-10)
)
print(wts1)
#> Method: stacking
#> ------
#> weight
#> model1 0.245
#> model2 0.755
#> model3 0.000
# can also pass a list of psis_loo objects to avoid recomputing loo
loo_list <- lapply(1:length(log_lik_list), function(j) {
loo(log_lik_list[[j]], r_eff = r_eff_list[[j]])
})
wts2 <- loo_model_weights(
loo_list,
method = "stacking",
optim_control = list(reltol=1e-10)
)
all.equal(wts1, wts2)
#> [1] TRUE
# can provide names to be used in the results
loo_model_weights(setNames(loo_list, c("A", "B", "C")))
#> Method: stacking
#> ------
#> weight
#> A 0.246
#> B 0.754
#> C 0.000
# pseudo-BMA+ method:
set.seed(1414)
loo_model_weights(loo_list, method = "pseudobma")
#> Method: pseudo-BMA+ with Bayesian bootstrap
#> ------
#> weight
#> model1 0.036
#> model2 0.948
#> model3 0.016
# pseudo-BMA method (set BB = FALSE):
loo_model_weights(loo_list, method = "pseudobma", BB = FALSE)
#> Method: pseudo-BMA
#> ------
#> weight
#> model1 0.000
#> model2 0.987
#> model3 0.013
# calling stacking_weights or pseudobma_weights directly
lpd1 <- loo(log_lik_list[[1]], r_eff = r_eff_list[[1]])$pointwise[,1]
lpd2 <- loo(log_lik_list[[2]], r_eff = r_eff_list[[2]])$pointwise[,1]
lpd3 <- loo(log_lik_list[[3]], r_eff = r_eff_list[[3]])$pointwise[,1]
stacking_weights(cbind(lpd1, lpd2, lpd3))
#> Method: stacking
#> ------
#> weight
#> model1 0.246
#> model2 0.754
#> model3 0.000
pseudobma_weights(cbind(lpd1, lpd2, lpd3))
#> Method: pseudo-BMA+ with Bayesian bootstrap
#> ------
#> weight
#> model1 0.039
#> model2 0.945
#> model3 0.016
pseudobma_weights(cbind(lpd1, lpd2, lpd3), BB = FALSE)
#> Method: pseudo-BMA
#> ------
#> weight
#> model1 0.000
#> model2 0.987
#> model3 0.013
# }