Skip to contents

Package description, glossary, and included data sets

loo-package
Efficient LOO-CV and WAIC for Bayesian models
loo-glossary
LOO package glossary
loo-datasets Kline milk voice voice_loo
Datasets for loo examples and vignettes

Approximate LOO-CV

Approximate LOO-CV, Pareto smoothed importance sampling (PSIS), and diagnostics.

loo() loo_i() is.loo() is.psis_loo()
Efficient approximate leave-one-out cross-validation (LOO)
loo_subsample()
Efficient approximate leave-one-out cross-validation (LOO) using subsampling, so that less costly and more approximate computation is made for all LOO-fold, and more costly and accurate computations are made only for m<N LOO-folds.
loo_approximate_posterior()
Efficient approximate leave-one-out cross-validation (LOO) for posterior approximations
loo_moment_match()
Moment matching for efficient approximate leave-one-out cross-validation (LOO)
loo_moment_match_split()
Split moment matching for efficient approximate leave-one-out cross-validation (LOO)
E_loo()
Compute weighted expectations
psis() is.psis() is.sis() is.tis()
Pareto smoothed importance sampling (PSIS)
ap_psis()
Pareto smoothed importance sampling (PSIS) using approximate posteriors
tis()
Truncated importance sampling (TIS)
sis()
Standard importance sampling (SIS)
importance_sampling()
A parent class for different importance sampling methods.
weights(<importance_sampling>)
Extract importance sampling weights
pareto_k_table() pareto_k_ids() pareto_k_values() pareto_k_influence_values() psis_n_eff_values() mcse_loo() plot(<psis_loo>) plot(<psis>)
Diagnostics for Pareto smoothed importance sampling (PSIS)

Model comparison weighting/averaging

Functions for comparing models and computing model weights via stacking of predictive distributions or pseudo-BMA weighting.

loo_compare() print(<compare.loo>) print(<compare.loo_ss>)
Model comparison
loo_model_weights() stacking_weights() pseudobma_weights()
Model averaging/weighting via stacking or pseudo-BMA weighting

Helper functions for K-fold CV

kfold_split_random() kfold_split_stratified() kfold_split_grouped()
Helper functions for K-fold cross-validation
kfold() is.kfold()
Generic function for K-fold cross-validation for developers
elpd()
Generic (expected) log-predictive density

Other functions

loo_predictive_metric()
Estimate leave-one-out predictive performance..
crps() scrps() loo_crps() loo_scrps()
Continuously ranked probability score
elpd()
Generic (expected) log-predictive density
waic() is.waic()
Widely applicable information criterion (WAIC)
extract_log_lik()
Extract pointwise log-likelihood from a Stan model
pointwise()
Convenience function for extracting pointwise estimates
relative_eff()
Convenience function for computing relative efficiencies
gpdfit()
Estimate parameters of the Generalized Pareto distribution
example_loglik_array() example_loglik_matrix()
Objects to use in examples and tests
print(<loo>) print(<waic>) print(<psis_loo>) print(<importance_sampling_loo>) print(<psis_loo_ap>) print(<psis>) print(<importance_sampling>)
Print methods
nobs(<psis_loo_ss>)
The number of observations in a psis_loo_ss object.
obs_idx()
Get observation indices used in subsampling
update(<psis_loo_ss>)
Update psis_loo_ss objects

Deprecated functions

compare()
Model comparison (deprecated, old version)
psislw()
Pareto smoothed importance sampling (deprecated, old version)