Package index
-
loo-package - Efficient LOO-CV and WAIC for Bayesian models
-
loo-glossary - LOO package glossary
-
loo-datasetsKlinemilkvoicevoice_loo - Datasets for loo examples and vignettes
-
loo()loo_i()is.loo()is.psis_loo() - Efficient approximate leave-one-out cross-validation (LOO)
-
loo_subsample() - Efficient approximate leave-one-out cross-validation (LOO) using subsampling, so that less costly and more approximate computation is made for all LOO-fold, and more costly and accurate computations are made only for m<N LOO-folds.
-
loo_approximate_posterior() - Efficient approximate leave-one-out cross-validation (LOO) for posterior approximations
-
loo_moment_match() - Moment matching for efficient approximate leave-one-out cross-validation (LOO)
-
loo_moment_match_split() - Split moment matching for efficient approximate leave-one-out cross-validation (LOO)
-
E_loo() - Compute weighted expectations
-
ap_psis() - Pareto smoothed importance sampling (PSIS) using approximate posteriors
-
tis() - Truncated importance sampling (TIS)
-
sis() - Standard importance sampling (SIS)
-
importance_sampling() - A parent class for different importance sampling methods.
-
weights(<importance_sampling>) - Extract importance sampling weights
-
pareto_k_table()pareto_k_ids()pareto_k_values()pareto_k_influence_values()psis_n_eff_values()mcse_loo()plot(<psis_loo>)plot(<psis>) - Diagnostics for Pareto smoothed importance sampling (PSIS)
Model comparison weighting/averaging
Functions for comparing models and computing model weights via stacking of predictive distributions or pseudo-BMA weighting.
-
loo_compare()print(<compare.loo>)print(<compare.loo_ss>) - Model comparison
-
loo_model_weights()stacking_weights()pseudobma_weights() - Model averaging/weighting via stacking or pseudo-BMA weighting
-
kfold_split_random()kfold_split_stratified()kfold_split_grouped() - Helper functions for K-fold cross-validation
-
kfold()is.kfold() - Generic function for K-fold cross-validation for developers
-
elpd() - Generic (expected) log-predictive density
-
loo_predictive_metric() - Estimate leave-one-out predictive performance..
-
crps()scrps()loo_crps()loo_scrps() - Continuously ranked probability score
-
elpd() - Generic (expected) log-predictive density
-
extract_log_lik() - Extract pointwise log-likelihood from a Stan model
-
pointwise() - Convenience function for extracting pointwise estimates
-
relative_eff() - Convenience function for computing relative efficiencies
-
gpdfit() - Estimate parameters of the Generalized Pareto distribution
-
example_loglik_array()example_loglik_matrix() - Objects to use in examples and tests
-
print(<loo>)print(<waic>)print(<psis_loo>)print(<importance_sampling_loo>)print(<psis_loo_ap>)print(<psis>)print(<importance_sampling>) - Print methods
-
nobs(<psis_loo_ss>) - The number of observations in a
psis_loo_ssobject.
-
obs_idx() - Get observation indices used in subsampling
-
update(<psis_loo_ss>) - Update
psis_loo_ssobjects