Published Articles and Books
Stan Language and Algorithms
Bob Carpenter, Andrew Gelman, Matthew D. Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. 2017. Stan: A probabilistic programming language. Journal of Statistical Software 76(1).
Andrew Gelman, Daniel Lee, and Jiqiang Guo. 2015. Stan: A probabilistic programming language for Bayesian inference and optimization. Journal of Education and Behavioral Statistics. 40(5):530–543.
Alp Kucukelbir, Rajesh Ranganath, Andrew Gelman and David M. Blei. 2015. Automatic variational inference in Stan
Lu Zhang, Bob Carpenter, Andrew Gelman, Aki Vehtari. 2022. Pathfinder: Parallel quasi-Newton variational inference Journal of Machine Learning Research. 23(306):1−49, 2022.
Michael Betancourt. 2017. A Conceptual Introduction to Hamiltonian Monte Carlo. arXiv:1701.02434.
Matthew D. Hoffman, Andrew Gelman. 2014. The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research. 15(47):1593−1623.
Cole C. Monnahan, James T. Thorson, and Trevor A. Branch. 2017. Faster estimation of Bayesian models in ecology using Hamiltonian Monte Carlo Methods in Ecology and Evolution. 8(3):339-348.
Radford Neal. 2011. MCMC Using Hamiltonian Dynamics. In Handbook of Markov Chain Monte Carlo, edited by Steve Brooks, Andrew Gelman, Galin L. Jones, and Xiao-Li Meng. Chapman-Hall/CRC.
Bob Carpenter, Matthew D. Hoffman, Marcus Brubaker, Daniel Lee, Peter Li, and Michael J. Betancourt. 2015. The Stan Math Library: Reverse-Mode Automatic Differentiation in C++. arXiv 1509.07164.
Bayesian Workflow
Andrew Gelman, Aki Vehtari, Daniel Simpson, Charles C. Margossian, Bob Carpenter, Yuling Yao, Lauren Kennedy, Jonah Gabry, Paul-Christian Bürkner, Martin Modrák. 2020. Bayesian Workflow
Aki Vehtari, Andrew Gelman, Daniel Simpson, Bob Carpenter, Paul-Christian Bürkner, 2021. Rank-Normalization, Folding, and Localization: An Improved R-hat for Assessing Convergence of MCMC (with Discussion) Bayesian Analysis 16(2).
Aki Vehtari, Andrew Gelman, and Jonah Gabry. 2016. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing. doi:10.1007/s11222-016-9696-4.
Jonah Gabry, Daniel Simpson, Aki Vehtari, Michael Betancourt, Andrew Gelman. 2019 Visualization in Bayesian workflow. Journal of the Royal Statistical Society Series A: Statistics in Society 182(2):389–402.
Robert L. Grant, Daniel C. Furr, Bob Carpenter, and Andrew Gelman. 2016. Fitting Bayesian item response models in Stata and Stan. arXiv 1601.03443.
Books using Stan
Gelman, A., Hill, J., and Vehtari A. 2020. Regression and Other Stories
Gelman, A. and Vehtari A. 2024. Active Statistics
Korner-Nievergelt, F., Roth, T., Von Felten, S., Guélat, J., Almasi, B. and Korner-Nievergelt, P. 2024. Bayesian Data Analysis in Ecology Using Linear Models with R and Stan. Online.
Suzuki, J. 2023. WAIC and WBIC with R Stan: 100 Exercises for Building Logic. Springer.
Matsuura, K.. 2022. Bayesian Statistical Modeling with Stan, R, and Python. Springer.
Johnson, A.A., M. Q. Ott, M. Dogucu. 2021. Bayes Rules! An Introduction to Applied Bayesian Modeling CRC Press.
Holmes, E. E., M. D. Scheuerell, and E. J. Ward. 2019. Applied Time Series Analysis for Fisheries and Environmental Sciences. NOAA Fisheries, Northwest Fisheries Science Center.
Hilbe, J. M., R.S. de Souza, and E. E. O. Ishida. 2017. Bayesian Models for Astrophysical Data Using R, JAGS, Python and Stan. Cambridge University Press.
Matsuura, K.. 2016. Bayesian Statistical Modeling Using Stan and R. Wonderful R Series, Volume 2. Kyoritsu Shuppan Co., Ltd. [in Japanese]
McElreath, R. 2016. Statistical Rethinking: A Bayesian Course with R and Stan. Chapman-Hall/CRC.
Korner-Nievergelt, F., Roth, T., Von Felten, S., Guélat, J., Almasi, B. and Korner-Nievergelt, P. 2015. Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan. Academic Press.
Kruschke, J. 2014. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan. Academic Press.
Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A. and Rubin, D.B. 2013. Bayesian Data Analysis, Third Edition. Chapman-Hall/CRC.