This is an old version, view current version.

Positive Continuous Distributions

The positive continuous probability functions have support on the positive real numbers.

Lognormal distribution

Probability density function

If \(\mu \in \mathbb{R}\) and \(\sigma \in \mathbb{R}^+\), then for \(y \in \mathbb{R}^+\), \[\begin{equation*} \text{LogNormal}(y|\mu,\sigma) = \frac{1}{\sqrt{2 \pi} \ \sigma} \, \frac{1}{y} \ \exp \! \left( - \, \frac{1}{2} \, \left( \frac{\log y - \mu}{\sigma} \right)^2 \right) . \end{equation*}\]

Sampling statement

y ~ lognormal(mu, sigma)

Increment target log probability density with lognormal_lupdf(y | mu, sigma).

Available since 2.0

Stan functions

real lognormal_lpdf(reals y | reals mu, reals sigma)
The log of the lognormal density of y given location mu and scale sigma

Available since 2.12

real lognormal_lupdf(reals y | reals mu, reals sigma)
The log of the lognormal density of y given location mu and scale sigma dropping constant additive terms

Available since 2.25

real lognormal_cdf(reals y | reals mu, reals sigma)
The cumulative lognormal distribution function of y given location mu and scale sigma

Available since 2.0

real lognormal_lcdf(reals y | reals mu, reals sigma)
The log of the lognormal cumulative distribution function of y given location mu and scale sigma

Available since 2.12

real lognormal_lccdf(reals y | reals mu, reals sigma)
The log of the lognormal complementary cumulative distribution function of y given location mu and scale sigma

Available since 2.12

R lognormal_rng(reals mu, reals sigma)
Generate a lognormal variate with location mu and scale sigma; may only be used in transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.

Available since 2.22

Chi-square distribution

Probability density function

If \(\nu \in \mathbb{R}^+\), then for \(y \in \mathbb{R}^+\), \[\begin{equation*} \text{ChiSquare}(y|\nu) = \frac{2^{-\nu/2}} {\Gamma(\nu / 2)} \, y^{\nu/2 - 1} \, \exp \! \left( -\, \frac{1}{2} \, y \right) . \end{equation*}\]

Sampling statement

y ~ chi_square(nu)

Increment target log probability density with chi_square_lupdf(y | nu).

Available since 2.0

Stan functions

real chi_square_lpdf(reals y | reals nu)
The log of the Chi-square density of y given degrees of freedom nu

Available since 2.12

real chi_square_lupdf(reals y | reals nu)
The log of the Chi-square density of y given degrees of freedom nu dropping constant additive terms

Available since 2.25

real chi_square_cdf(reals y | reals nu)
The Chi-square cumulative distribution function of y given degrees of freedom nu

Available since 2.0

real chi_square_lcdf(reals y | reals nu)
The log of the Chi-square cumulative distribution function of y given degrees of freedom nu

Available since 2.12

real chi_square_lccdf(reals y | reals nu)
The log of the complementary Chi-square cumulative distribution function of y given degrees of freedom nu

Available since 2.12

R chi_square_rng(reals nu)
Generate a Chi-square variate with degrees of freedom nu; may only be used in transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.

Available since 2.18

Inverse chi-square distribution

Probability density function

If \(\nu \in \mathbb{R}^+\), then for \(y \in \mathbb{R}^+\), \[\begin{equation*} \text{InvChiSquare}(y \, | \, \nu) = \frac{2^{-\nu/2}} {\Gamma(\nu / 2)} \, y^{-\nu/2 - 1} \, \exp\! \left( \! - \, \frac{1}{2} \, \frac{1}{y} \right) . \end{equation*}\]

Sampling statement

y ~ inv_chi_square(nu)

Increment target log probability density with inv_chi_square_lupdf(y | nu).

Available since 2.0

Stan functions

real inv_chi_square_lpdf(reals y | reals nu)
The log of the inverse Chi-square density of y given degrees of freedom nu

Available since 2.12

real inv_chi_square_lupdf(reals y | reals nu)
The log of the inverse Chi-square density of y given degrees of freedom nu dropping constant additive terms

Available since 2.25

real inv_chi_square_cdf(reals y | reals nu)
The inverse Chi-squared cumulative distribution function of y given degrees of freedom nu

Available since 2.0

real inv_chi_square_lcdf(reals y | reals nu)
The log of the inverse Chi-squared cumulative distribution function of y given degrees of freedom nu

Available since 2.12

real inv_chi_square_lccdf(reals y | reals nu)
The log of the inverse Chi-squared complementary cumulative distribution function of y given degrees of freedom nu

Available since 2.12

R inv_chi_square_rng(reals nu)
Generate an inverse Chi-squared variate with degrees of freedom nu; may only be used in transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.

Available since 2.18

Scaled inverse chi-square distribution

Probability density function

If \(\nu \in \mathbb{R}^+\) and \(\sigma \in \mathbb{R}^+\), then for \(y \in \mathbb{R}^+\), \[\begin{equation*} \text{ScaledInvChiSquare}(y|\nu,\sigma) = \frac{(\nu / 2)^{\nu/2}} {\Gamma(\nu / 2)} \, \sigma^{\nu} \, y^{-(\nu/2 + 1)} \, \exp \! \left( \! - \, \frac{1}{2} \, \nu \, \sigma^2 \, \frac{1}{y} \right) . \end{equation*}\]

Sampling statement

y ~ scaled_inv_chi_square(nu, sigma)

Increment target log probability density with scaled_inv_chi_square_lupdf(y | nu, sigma).

Available since 2.0

Stan functions

real scaled_inv_chi_square_lpdf(reals y | reals nu, reals sigma)
The log of the scaled inverse Chi-square density of y given degrees of freedom nu and scale sigma

Available since 2.12

real scaled_inv_chi_square_lupdf(reals y | reals nu, reals sigma)
The log of the scaled inverse Chi-square density of y given degrees of freedom nu and scale sigma dropping constant additive terms

Available since 2.25

real scaled_inv_chi_square_cdf(reals y | reals nu, reals sigma)
The scaled inverse Chi-square cumulative distribution function of y given degrees of freedom nu and scale sigma

Available since 2.0

real scaled_inv_chi_square_lcdf(reals y | reals nu, reals sigma)
The log of the scaled inverse Chi-square cumulative distribution function of y given degrees of freedom nu and scale sigma

Available since 2.12

real scaled_inv_chi_square_lccdf(reals y | reals nu, reals sigma)
The log of the scaled inverse Chi-square complementary cumulative distribution function of y given degrees of freedom nu and scale sigma

Available since 2.12

R scaled_inv_chi_square_rng(reals nu, reals sigma)
Generate a scaled inverse Chi-squared variate with degrees of freedom nu and scale sigma; may only be used in transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.

Available since 2.18

Exponential distribution

Probability density function

If \(\beta \in \mathbb{R}^+\), then for \(y \in \mathbb{R}^+\), \[\begin{equation*} \text{Exponential}(y|\beta) = \beta \, \exp ( - \beta \, y ) . \end{equation*}\]

Sampling statement

y ~ exponential(beta)

Increment target log probability density with exponential_lupdf(y | beta).

Available since 2.0

Stan functions

real exponential_lpdf(reals y | reals beta)
The log of the exponential density of y given inverse scale beta

Available since 2.12

real exponential_lupdf(reals y | reals beta)
The log of the exponential density of y given inverse scale beta dropping constant additive terms

Available since 2.25

real exponential_cdf(reals y | reals beta)
The exponential cumulative distribution function of y given inverse scale beta

Available since 2.0

real exponential_lcdf(reals y | reals beta)
The log of the exponential cumulative distribution function of y given inverse scale beta

Available since 2.12

real exponential_lccdf(reals y | reals beta)
The log of the exponential complementary cumulative distribution function of y given inverse scale beta

Available since 2.12

R exponential_rng(reals beta)
Generate an exponential variate with inverse scale beta; may only be used in transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.

Available since 2.18

Gamma distribution

Probability density function

If \(\alpha \in \mathbb{R}^+\) and \(\beta \in \mathbb{R}^+\), then for \(y \in \mathbb{R}^+\), \[\begin{equation*} \text{Gamma}(y|\alpha,\beta) = \frac{\beta^{\alpha}} {\Gamma(\alpha)} \, y^{\alpha - 1} \exp(-\beta \, y) . \end{equation*}\]

Sampling statement

y ~ gamma(alpha, beta)

Increment target log probability density with gamma_lupdf(y | alpha, beta).

Available since 2.0

Stan functions

real gamma_lpdf(reals y | reals alpha, reals beta)
The log of the gamma density of y given shape alpha and inverse scale beta

Available since 2.12

real gamma_lupdf(reals y | reals alpha, reals beta)
The log of the gamma density of y given shape alpha and inverse scale beta dropping constant additive terms

Available since 2.25

real gamma_cdf(reals y | reals alpha, reals beta)
The cumulative gamma distribution function of y given shape alpha and inverse scale beta

Available since 2.0

real gamma_lcdf(reals y | reals alpha, reals beta)
The log of the cumulative gamma distribution function of y given shape alpha and inverse scale beta

Available since 2.12

real gamma_lccdf(reals y | reals alpha, reals beta)
The log of the complementary cumulative gamma distribution function of y given shape alpha and inverse scale beta

Available since 2.12

R gamma_rng(reals alpha, reals beta)
Generate a gamma variate with shape alpha and inverse scale beta; may only be used in transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.

Available since 2.18

Inverse gamma Distribution

Probability density function

If \(\alpha \in \mathbb{R}^+\) and \(\beta \in \mathbb{R}^+\), then for \(y \in \mathbb{R}^+\), \[\begin{equation*} \text{InvGamma}(y|\alpha,\beta) = \frac{\beta^{\alpha}} {\Gamma(\alpha)} \ y^{-(\alpha + 1)} \, \exp \! \left( \! - \beta \, \frac{1}{y} \right) . \end{equation*}\]

Sampling statement

y ~ inv_gamma(alpha, beta)

Increment target log probability density with inv_gamma_lupdf(y | alpha, beta).

Available since 2.0

Stan functions

real inv_gamma_lpdf(reals y | reals alpha, reals beta)
The log of the inverse gamma density of y given shape alpha and scale beta

Available since 2.12

real inv_gamma_lupdf(reals y | reals alpha, reals beta)
The log of the inverse gamma density of y given shape alpha and scale beta dropping constant additive terms

Available since 2.25

real inv_gamma_cdf(reals y | reals alpha, reals beta)
The inverse gamma cumulative distribution function of y given shape alpha and scale beta

Available since 2.0

real inv_gamma_lcdf(reals y | reals alpha, reals beta)
The log of the inverse gamma cumulative distribution function of y given shape alpha and scale beta

Available since 2.12

real inv_gamma_lccdf(reals y | reals alpha, reals beta)
The log of the inverse gamma complementary cumulative distribution function of y given shape alpha and scale beta

Available since 2.12

R inv_gamma_rng(reals alpha, reals beta)
Generate an inverse gamma variate with shape alpha and scale beta; may only be used in transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.

Available since 2.18

Weibull distribution

Probability density function

If \(\alpha \in \mathbb{R}^+\) and \(\sigma \in \mathbb{R}^+\), then for \(y \in [0,\infty)\), \[\begin{equation*} \text{Weibull}(y|\alpha,\sigma) = \frac{\alpha}{\sigma} \, \left( \frac{y}{\sigma} \right)^{\alpha - 1} \, \exp \! \left( \! - \left( \frac{y}{\sigma} \right)^{\alpha} \right) . \end{equation*}\]

Note that if \(Y \propto \text{Weibull}(\alpha,\sigma)\), then \(Y^{-1} \propto \text{Frechet}(\alpha,\sigma^{-1})\).

Sampling statement

y ~ weibull(alpha, sigma)

Increment target log probability density with weibull_lupdf(y | alpha, sigma).

Available since 2.0

Stan functions

real weibull_lpdf(reals y | reals alpha, reals sigma)
The log of the Weibull density of y given shape alpha and scale sigma

Available since 2.12

real weibull_lupdf(reals y | reals alpha, reals sigma)
The log of the Weibull density of y given shape alpha and scale sigma dropping constant additive terms

Available since 2.25

real weibull_cdf(reals y | reals alpha, reals sigma)
The Weibull cumulative distribution function of y given shape alpha and scale sigma

Available since 2.0

real weibull_lcdf(reals y | reals alpha, reals sigma)
The log of the Weibull cumulative distribution function of y given shape alpha and scale sigma

Available since 2.12

real weibull_lccdf(reals y | reals alpha, reals sigma)
The log of the Weibull complementary cumulative distribution function of y given shape alpha and scale sigma

Available since 2.12

R weibull_rng(reals alpha, reals sigma)
Generate a weibull variate with shape alpha and scale sigma; may only be used in transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.

Available since 2.18

Frechet distribution

Probability density function

If \(\alpha \in \mathbb{R}^+\) and \(\sigma \in \mathbb{R}^+\), then for \(y \in \mathbb{R}^+\), \[\begin{equation*} \text{Frechet}(y|\alpha,\sigma) = \frac{\alpha}{\sigma} \, \left( \frac{y}{\sigma} \right)^{-\alpha - 1} \, \exp \! \left( \! - \left( \frac{y}{\sigma} \right)^{-\alpha} \right) . \end{equation*}\]

Note that if \(Y \propto \text{Frechet}(\alpha,\sigma)\), then \(Y^{-1} \propto \text{Weibull}(\alpha,\sigma^{-1})\).

Sampling statement

y ~ frechet(alpha, sigma)

Increment target log probability density with frechet_lupdf(y | alpha, sigma).

Available since 2.5

Stan functions

real frechet_lpdf(reals y | reals alpha, reals sigma)
The log of the Frechet density of y given shape alpha and scale sigma

Available since 2.12

real frechet_lupdf(reals y | reals alpha, reals sigma)
The log of the Frechet density of y given shape alpha and scale sigma dropping constant additive terms

Available since 2.25

real frechet_cdf(reals y | reals alpha, reals sigma)
The Frechet cumulative distribution function of y given shape alpha and scale sigma

Available since 2.5

real frechet_lcdf(reals y | reals alpha, reals sigma)
The log of the Frechet cumulative distribution function of y given shape alpha and scale sigma

Available since 2.12

real frechet_lccdf(reals y | reals alpha, reals sigma)
The log of the Frechet complementary cumulative distribution function of y given shape alpha and scale sigma

Available since 2.12

R frechet_rng(reals alpha, reals sigma)
Generate a Frechet variate with shape alpha and scale sigma; may only be used in transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.

Available since 2.18

Rayleigh distribution

Probability density function

If \(\sigma \in \mathbb{R}^+\), then for \(y \in [0,\infty)\), \[\begin{equation*} \text{Rayleigh}(y|\sigma) = \frac{y}{\sigma^2} \exp(-y^2 / 2\sigma^2) \!. \end{equation*}\]

Sampling statement

y ~ rayleigh(sigma)

Increment target log probability density with rayleigh_lupdf(y | sigma).

Available since 2.0

Stan functions

real rayleigh_lpdf(reals y | reals sigma)
The log of the Rayleigh density of y given scale sigma

Available since 2.12

real rayleigh_lupdf(reals y | reals sigma)
The log of the Rayleigh density of y given scale sigma dropping constant additive terms

Available since 2.25

real rayleigh_cdf(real y | real sigma)
The Rayleigh cumulative distribution of y given scale sigma

Available since 2.0

real rayleigh_lcdf(real y | real sigma)
The log of the Rayleigh cumulative distribution of y given scale sigma

Available since 2.12

real rayleigh_lccdf(real y | real sigma)
The log of the Rayleigh complementary cumulative distribution of y given scale sigma

Available since 2.12

R rayleigh_rng(reals sigma)
Generate a Rayleigh variate with scale sigma; may only be used in generated quantities block. For a description of argument and return types, see section vectorized PRNG functions.

Available since 2.18

Log-logistic distribution

Probability density function

If \(\alpha, \beta \in \mathbb{R}^+\), then for \(y \in \mathbb{R}^+\), \[\begin{equation*} \text{Log-Logistic}(y|\alpha,\beta) = \frac{\ \left(\frac{\beta}{\alpha}\right) \left(\frac{y}{\alpha}\right)^{\beta-1}\ }{\left(1 + \left(\frac{y}{\alpha}\right)^\beta\right)^2} . \end{equation*}\]

Sampling statement

y ~ loglogistic(alpha, beta)

Increment target log probability density with unnormalized version of loglogistic_lpdf(y | alpha, beta)

Available since 2.29

Stan functions

real loglogistic_lpdf(reals y | reals alpha, reals beta)
The log of the log-logistic density of y given scale alpha and shape beta

Available since 2.29

real loglogistic_cdf(reals y | reals alpha, reals beta)
The log-logistic cumulative distribution function of y given scale alpha and shape beta

Available since 2.29

R loglogistic_rng(reals alpha, reals beta)
Generate a log-logistic variate with scale alpha and shape beta; may only be used in transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.

Available since 2.29
Back to top