This is an old version, view current version.

24.1 Uniform distribution

24.1.1 Probability density function

If αR and β(α,), then for y[α,β], Uniform(y|α,β)=1βα.

24.1.2 Sampling statement

y ~ uniform(alpha, beta)

Increment target log probability density with uniform_lupdf(y | alpha, beta).
Available since 2.0

24.1.3 Stan functions

real uniform_lpdf(reals y | reals alpha, reals beta)
The log of the uniform density of y given lower bound alpha and upper bound beta
Available since 2.12

real uniform_lupdf(reals y | reals alpha, reals beta)
The log of the uniform density of y given lower bound alpha and upper bound beta dropping constant additive terms
Available since 2.25

real uniform_cdf(reals y, reals alpha, reals beta)
The uniform cumulative distribution function of y given lower bound alpha and upper bound beta
Available since 2.0

real uniform_lcdf(reals y | reals alpha, reals beta)
The log of the uniform cumulative distribution function of y given lower bound alpha and upper bound beta
Available since 2.12

real uniform_lccdf(reals y | reals alpha, reals beta)
The log of the uniform complementary cumulative distribution function of y given lower bound alpha and upper bound beta
Available since 2.12

R uniform_rng(reals alpha, reals beta)
Generate a uniform variate with lower bound alpha and upper bound beta; may only be used in transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.
Available since 2.18