This is an old version, view current version.

## 5.9 Container construction functions

real[] linspaced_array(int n, data real lower, data real upper)
Create a real array of length n of equidistantly-spaced elements between lower and upper

real[] linspaced_int_array(int n, int lower, int upper)
Create a regularly spaced, increasing integer array of length n between lower and upper, inclusively. If (upper - lower) / (n - 1) is less than one, repeat each output (n - 1) / (upper - lower) times. If neither (upper - lower) / (n - 1) or (n - 1) / (upper - lower) are integers, upper is reduced until one of these is true.

vector linspaced_vector(int n, data real lower, data real upper)
Create an n-dimensional vector of equidistantly-spaced elements between lower and upper

row_vector linspaced_row_vector(int n, data real lower, data real upper)
Create an n-dimensional row-vector of equidistantly-spaced elements between lower and upper

int[] one_hot_int_array(int n, int k)
Create a one-hot encoded int array of length n with array[k] = 1

real[] one_hot_array(int n, int k)
Create a one-hot encoded real array of length n with array[k] = 1

vector one_hot_vector(int n, int k)
Create an n-dimensional one-hot encoded vector with vector[k] = 1

row_vector one_hot_row_vector(int n, int k)
Create an n-dimensional one-hot encoded row-vector with row_vector[k] = 1

int[] ones_int_array(int n)
Create an int array of length n of all ones

real[] ones_array(int n)
Create a real array of length n of all ones

vector ones_vector(int n)
Create an n-dimensional vector of all ones

row_vector ones_row_vector(int n)
Create an n-dimensional row-vector of all ones

int[] zeros_int_array(int n)
Create an int array of length n of all zeros

real[] zeros_array(int n)
Create a real array of length n of all zeros

vector zeros_vector(int n)
Create an n-dimensional vector of all zeros

row_vector zeros_row_vector(int n)
Create an n-dimensional row-vector of all zeros

vector uniform_simplex(int n)
Create an n-dimensional simplex with elements vector[i] = 1 / n for all $$i \in 1, \dots, n$$