References
Betancourt, Michael. 2010. “Cruising the Simplex: Hamiltonian Monte Carlo and the Dirichlet Distribution.” arXiv 1010.3436. http://arxiv.org/abs/1010.3436.
———. 2016a. “Diagnosing Suboptimal Cotangent Disintegrations in Hamiltonian Monte Carlo.” arXiv 1604.00695. https://arxiv.org/abs/1604.00695.
———. 2016b. “Identifying the Optimal Integration Time in Hamiltonian Monte Carlo.” arXiv 1601.00225. https://arxiv.org/abs/1601.00225.
———. 2017. “A Conceptual Introduction to Hamiltonian Monte Carlo.” arXiv 1701.02434. https://arxiv.org/abs/1701.02434.
Betancourt, Michael, and Mark Girolami. 2013. “Hamiltonian Monte Carlo for Hierarchical Models.” arXiv 1312.0906. http://arxiv.org/abs/1312.0906.
Corden, Martyn J., and David Kreitzer. 2014. “Consistency of Floating-Point Results Using the Intel Compiler or Why Doesn’t My Application Always Give the Same Answer?” Intel Corporation. https://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler.
Duchi, John, Elad Hazan, and Yoram Singer. 2011. “Adaptive Subgradient Methods for Online Learning and Stochastic Optimization.” The Journal of Machine Learning Research 12: 2121–59.
Gelman, Andrew, J. B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B. Rubin. 2013. Bayesian Data Analysis. Third Edition. London: Chapman & Hall / CRC Press.
Gelman, Andrew, and Jennifer Hill. 2007. Data Analysis Using Regression and Multilevel-Hierarchical Models. Cambridge, United Kingdom: Cambridge University Press.
Gelman, Andrew, and Donald B. Rubin. 1992. “Inference from Iterative Simulation Using Multiple Sequences.” Statistical Science 7 (4): 457–72.
Geyer, Charles J. 2011. “Introduction to Markov Chain Monte Carlo.” In Handbook of Markov Chain Monte Carlo, edited by Steve Brooks, Andrew Gelman, Galin L. Jones, and Xiao-Li Meng, 3–48. Chapman; Hall/CRC.
Geyer, Charles J. 1992. “Practical Markov Chain Monte Carlo.” Statistical Science, 473–83.
Hoffman, Matthew D., and Andrew Gelman. 2014. “The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo.” Journal of Machine Learning Research 15: 1593–1623. http://jmlr.org/papers/v15/hoffman14a.html.
Kucukelbir, Alp, Rajesh Ranganath, Andrew Gelman, and David M. Blei. 2015. “Automatic Variational Inference in Stan.” arXiv 1506.03431. http://arxiv.org/abs/1506.03431.
Leimkuhler, Benedict, and Sebastian Reich. 2004. Simulating Hamiltonian Dynamics. Cambridge: Cambridge University Press.
Lewandowski, Daniel, Dorota Kurowicka, and Harry Joe. 2009. “Generating Random Correlation Matrices Based on Vines and Extended Onion Method.” Journal of Multivariate Analysis 100: 1989–2001.
Marsaglia, George. 1972. “Choosing a Point from the Surface of a Sphere.” The Annals of Mathematical Statistics 43 (2): 645–46.
Metropolis, N., A. Rosenbluth, M. Rosenbluth, M. Teller, and E. Teller. 1953. “Equations of State Calculations by Fast Computing Machines.” Journal of Chemical Physics 21: 1087–92.
Neal, Radford. 2011. “MCMC Using Hamiltonian Dynamics.” In Handbook of Markov Chain Monte Carlo, edited by Steve Brooks, Andrew Gelman, Galin L. Jones, and Xiao-Li Meng, 116–62. Chapman; Hall/CRC.
Nesterov, Y. 2009. “Primal-Dual Subgradient Methods for Convex Problems.” Mathematical Programming 120 (1): 221–59.
Nocedal, Jorge, and Stephen J. Wright. 2006. Numerical Optimization. Second. Berlin: Springer-Verlag.
Roberts, G.O., Andrew Gelman, and Walter R. Gilks. 1997. “Weak Convergence and Optimal Scaling of Random Walk Metropolis Algorithms.” Annals of Applied Probability 7 (1): 110–20.