“Hello, World!”¶
Fitting a Stan model using the NUTS-HMC sampler¶
In order to verify the installation and also to demonstrate
the CmdStanPy workflow, we use CmdStanPy to fit the
the example Stan model bernoulli.stan
to the dataset bernoulli.data.json
.
The bernoulli.stan
is a Hello, World!
program which illustrates the basic syntax of the Stan language.
It allows the user to verify that CmdStanPy, CmdStan,
the StanC compiler, and the C++ toolchain have all been properly installed.
For substantive example models and guidance on coding statistical models in Stan, see the Stan User’s Guide.
The Stan model¶
The model bernoulli.stan
is a trivial model:
given a set of N observations of i.i.d. binary data
y[1] … y[N], it calculates the Bernoulli chance-of-success theta.
data {
int<lower=0> N;
array[N] int<lower=0,upper=1> y;
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1); // uniform prior on interval 0,1
y ~ bernoulli(theta);
}
The CmdStanModel
class manages the Stan program and its corresponding compiled executable.
It provides properties and functions to inspect the model code and filepaths.
A CmdStanModel can be instantiated from a Stan file or its corresponding compiled executable file.
# import packages
In [1]: import os
In [2]: from cmdstanpy import CmdStanModel
# specify Stan program file
In [3]: stan_file = os.path.join('users-guide', 'examples', 'bernoulli.stan')
# instantiate the model object
In [4]: model = CmdStanModel(stan_file=stan_file)
INFO:cmdstanpy:compiling stan file /home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/bernoulli.stan to exe file /home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/bernoulli
INFO:cmdstanpy:compiled model executable: /home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/bernoulli
# inspect model object
In [5]: print(model)
CmdStanModel: name=bernoulli
stan_file=/home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/bernoulli.stan
exe_file=/home/runner/work/cmdstanpy/cmdstanpy/docsrc/users-guide/examples/bernoulli
compiler_options=stanc_options={}, cpp_options={}
# inspect compiled model
In [6]: print(model.exe_info())
{'stan_version_major': '2', 'stan_version_minor': '35', 'stan_version_patch': '0', 'STAN_THREADS': 'false', 'STAN_MPI': 'false', 'STAN_OPENCL': 'false', 'STAN_NO_RANGE_CHECKS': 'false', 'STAN_CPP_OPTIMS': 'false'}
Data inputs¶
CmdStanPy accepts input data either as a Python dictionary which maps data variable names to values, or as the corresponding JSON file.
The bernoulli model requires two inputs: the number of observations N, and an N-length vector y of binary outcomes. The data file bernoulli.data.json contains the following inputs:
{
"N" : 10,
"y" : [0,1,0,0,0,0,0,0,0,1]
}
Fitting the model¶
The sample()
method is used to do Bayesian inference
over the model conditioned on data using using Hamiltonian Monte Carlo
(HMC) sampling. It runs Stan’s HMC-NUTS sampler on the model and data and
returns a CmdStanMCMC
object. The data can be specified
either as a filepath or a Python dictionary; in this example, we use the
example datafile bernoulli.data.json:
By default, the sample method runs 4 sampler chains.
# specify data file
In [7]: data_file = os.path.join('users-guide', 'examples', 'bernoulli.data.json')
# fit the model
In [8]: fit = model.sample(data=data_file)
INFO:cmdstanpy:CmdStan start processing
INFO:cmdstanpy:CmdStan done processing.
Note this model can be fit using other methods
the
pathfinder()
method does approximate Bayesian inference and returns aCmdStanPathfinder
objectthe
variational()
method does approximate Bayesian inference and returns aCmdStanVB
objectthe
optimize()
method does maximum likelihood estimation and returns aCmdStanMLE
object
Accessing the results¶
The sampler outputs are the set of per-chain Stan CSV files, a non-standard CSV file format. Each data row of the Stan CSV file contains the per-iteration estimate of the Stan model parameters, transformed parameters, and generated quantities variables. Container variables, i.e., vector, row-vector, matrix, and array variables are necessarily serialized into a single row’s worth of data. The output objects parse the set of Stan CSV files into a set of in-memory data structures and provide accessor functions for the all estimates and metadata. CmdStanPy makes a distinction between the per-iteration model outputs and the per-iteration algorithm outputs: the former are ‘stan_variables’ and the latter are ‘method_variables’.
The CmdStanMCMC object provides the following accessor methods:
stan_variable()
: returns an numpy.ndarray whose structure corresponds to the Stan program variable structurestan_variables()
: returns an Python dictionary mapping the Stan program variable names to the corresponding numpy.ndarray.draws()
: returns a numpy.ndarray which is either a 3-D array draws X chains X CSV columns, or a 2-D array draws X columns, where the chains are concatenated into a single column. The argument vars can be used to restrict this to just the columns for one or more variables.draws_pd()
: returns a pandas.DataFrame over all columns in the Stan CSV file. The argument vars can be used to restrict this to one or more variables.draws_xr()
: returns an xarray.Dataset which maps model variable names to their respective values. The argument vars can be used to restrict this to one or more variables.method_variables()
: returns a Python dictionary over the sampler diagnostic/information output columns which by convention end in__
, e.g.,lp__
.
# access model variable by name
In [9]: print(fit.stan_variable('theta'))
[0.224491 0.125899 0.28874 ... 0.344788 0.337899 0.384419]
In [10]: print(fit.draws_pd('theta')[:3])
theta
0 0.224491
1 0.125899
2 0.288740
In [11]: print(fit.draws_xr('theta'))
<xarray.Dataset> Size: 40kB
Dimensions: (draw: 1000, chain: 4)
Coordinates:
* chain (chain) int64 32B 1 2 3 4
* draw (draw) int64 8kB 0 1 2 3 4 5 6 7 ... 993 994 995 996 997 998 999
Data variables:
theta (chain, draw) float64 32kB 0.2245 0.1259 0.2887 ... 0.3379 0.3844
Attributes:
stan_version: 2.35.0
model: bernoulli_model
num_draws_sampling: 1000
# access all model variables
In [12]: for k, v in fit.stan_variables().items():
....: print(f'{k}\t{v.shape}')
....:
theta (4000,)
# access the sampler method variables
In [13]: for k, v in fit.method_variables().items():
....: print(f'{k}\t{v.shape}')
....:
lp__ (1000, 4)
accept_stat__ (1000, 4)
stepsize__ (1000, 4)
treedepth__ (1000, 4)
n_leapfrog__ (1000, 4)
divergent__ (1000, 4)
energy__ (1000, 4)
# access all Stan CSV file columns
In [14]: print(f'numpy.ndarray of draws: {fit.draws().shape}')
numpy.ndarray of draws: (1000, 4, 8)
In [15]: fit.draws_pd()
Out[15]:
chain__ iter__ draw__ ... divergent__ energy__ theta
0 1.0 1.0 1.0 ... 0.0 7.73101 0.224491
1 1.0 2.0 2.0 ... 0.0 7.66064 0.125899
2 1.0 3.0 3.0 ... 0.0 7.99122 0.288740
3 1.0 4.0 4.0 ... 0.0 7.64745 0.149887
4 1.0 5.0 5.0 ... 0.0 8.33723 0.373402
... ... ... ... ... ... ... ...
3995 4.0 996.0 3996.0 ... 0.0 7.24381 0.326292
3996 4.0 997.0 3997.0 ... 0.0 7.92789 0.341451
3997 4.0 998.0 3998.0 ... 0.0 7.06679 0.344788
3998 4.0 999.0 3999.0 ... 0.0 7.04801 0.337899
3999 4.0 1000.0 4000.0 ... 0.0 8.92492 0.384419
[4000 rows x 11 columns]
In addition to the MCMC sample itself, the CmdStanMCMC object provides access to the the per-chain HMC tuning parameters from the NUTS-HMC adaptive sampler, (if present).
In [16]: print(fit.metric_type)
diag_e
In [17]: print(fit.metric)
[[0.549616]
[0.443372]
[0.47257 ]
[0.443371]]
In [18]: print(fit.step_size)
[0.82683 1.20311 1.03741 1.02497]
The CmdStanMCMC object also provides access to metadata about the model and the sampler run.
In [19]: print(fit.metadata.cmdstan_config['model'])
bernoulli_model
In [20]: print(fit.metadata.cmdstan_config['seed'])
92628
CmdStan utilities: stansummary
, diagnose
¶
CmdStan is distributed with a posterior analysis utility
stansummary
that reads the outputs of all chains and computes summary statistics
for all sampler and model parameters and quantities of interest.
The CmdStanMCMC
method summary()
runs this utility and returns
summaries of the total joint log-probability density lp__ plus
all model parameters and quantities of interest in a pandas.DataFrame:
In [21]: fit.summary()
Out[21]:
Mean MCSE StdDev ... N_Eff N_Eff/s R_hat
lp__ -7.279690 0.019540 0.751782 ... 1480.28 34425.1 1.00131
theta 0.245071 0.003002 0.118943 ... 1569.59 36502.0 1.00091
[2 rows x 9 columns]
CmdStan is distributed with a second posterior analysis utility
diagnose
which analyzes the per-draw sampler parameters across all chains
looking for potential problems which indicate that the sample
isn’t a representative sample from the posterior.
The diagnose()
method runs this utility and prints the output to the console.
In [22]: print(fit.diagnose())
Processing csv files: /tmp/tmpz6k203wo/bernoulli4w8qmwpw/bernoulli-20240617142916_1.csv, /tmp/tmpz6k203wo/bernoulli4w8qmwpw/bernoulli-20240617142916_2.csv, /tmp/tmpz6k203wo/bernoulli4w8qmwpw/bernoulli-20240617142916_3.csv, /tmp/tmpz6k203wo/bernoulli4w8qmwpw/bernoulli-20240617142916_4.csv
Checking sampler transitions treedepth.
Treedepth satisfactory for all transitions.
Checking sampler transitions for divergences.
No divergent transitions found.
Checking E-BFMI - sampler transitions HMC potential energy.
E-BFMI satisfactory.
Effective sample size satisfactory.
Split R-hat values satisfactory all parameters.
Processing complete, no problems detected.