R/posterior_survfit.R
plot.survfit.stanjm.Rd
This generic plot
method for survfit.stanjm
objects will
plot the estimated subject-specific or marginal survival function
using the data frame returned by a call to posterior_survfit
.
The call to posterior_survfit
should ideally have included an
"extrapolation" of the survival function, obtained by setting the
extrapolate
argument to TRUE
.
The plot_stack_jm
function takes arguments containing the plots of the estimated
subject-specific longitudinal trajectory (or trajectories if a multivariate
joint model was estimated) and the plot of the estimated subject-specific
survival function and combines them into a single figure. This is most
easily understood by running the Examples below.
# S3 method for survfit.stanjm plot( x, ids = NULL, limits = c("ci", "none"), xlab = NULL, ylab = NULL, facet_scales = "free", ci_geom_args = NULL, ... ) plot_stack_jm(yplot, survplot)
x | A data frame and object of class |
---|---|
ids | An optional vector providing a subset of subject IDs for whom the predicted curves should be plotted. |
limits | A quoted character string specifying the type of limits to
include in the plot. Can be one of: |
xlab, ylab | An optional axis label passed to
|
facet_scales | A character string passed to the |
ci_geom_args | Optional arguments passed to
|
... | Optional arguments passed to
|
yplot | An object of class |
survplot | An object of class |
The plot method returns a ggplot
object, also of class
plot.survfit.stanjm
. This object can be further customised using the
ggplot2 package. It can also be passed to the function
plot_stack_jm
.
plot_stack_jm
returns an object of class
bayesplot_grid
that includes plots of the
estimated subject-specific longitudinal trajectories stacked on top of the
associated subject-specific survival curve.
posterior_survfit
, plot_stack_jm
,
posterior_traj
, plot.predict.stanjm
plot.predict.stanjm
, plot.survfit.stanjm
,
posterior_predict
, posterior_survfit
# \donttest{ # Run example model if not already loaded if (!exists("example_jm")) example(example_jm) # Obtain subject-specific conditional survival probabilities # for all individuals in the estimation dataset. ps1 <- posterior_survfit(example_jm, extrapolate = TRUE) # We then plot the conditional survival probabilities for # a subset of individuals plot(ps1, ids = c(7,13,15))# Since the returned plot is also a ggplot object, we can # modify some of its attributes after it has been returned plot1 <- plot(ps1, ids = c(7,13,15)) plot1 + ggplot2::theme(strip.background = ggplot2::element_blank()) + ggplot2::coord_cartesian(xlim = c(0, 15)) + ggplot2::labs(title = "Some plotted survival functions")#># We can also combine the plot(s) of the estimated # subject-specific survival functions, with plot(s) # of the estimated longitudinal trajectories for the # same individuals ps1 <- posterior_survfit(example_jm, ids = c(7,13,15)) pt1 <- posterior_traj(example_jm, , ids = c(7,13,15)) plot_surv <- plot(ps1) plot_traj <- plot(pt1, vline = TRUE, plot_observed = TRUE)#>#>plot_stack_jm(plot_traj, plot_surv)#>#># Lastly, let us plot the standardised survival function # based on all individuals in our estimation dataset ps2 <- posterior_survfit(example_jm, standardise = TRUE, times = 0, control = list(epoints = 20)) plot(ps2)# } # \donttest{ if (!exists("example_jm")) example(example_jm) ps1 <- posterior_survfit(example_jm, ids = c(7,13,15)) pt1 <- posterior_traj(example_jm, ids = c(7,13,15), extrapolate = TRUE) plot_surv <- plot(ps1) plot_traj <- plot(pt1, vline = TRUE, plot_observed = TRUE)#>#>plot_stack_jm(plot_traj, plot_surv)#>#># }