Automatic Differentiation
 
Loading...
Searching...
No Matches
operands_and_partials.hpp File Reference

Go to the source code of this file.

Classes

class  stan::math::internal::ops_partials_edge< double, var >
 
class  stan::math::internal::ops_partials_edge< double, std::vector< var > >
 
class  stan::math::internal::ops_partials_edge< double, Op, require_eigen_st< is_var, Op > >
 
class  stan::math::internal::ops_partials_edge< double, var_value< Op >, require_eigen_t< Op > >
 
class  stan::math::internal::ops_partials_edge< double, std::vector< Eigen::Matrix< var, R, C > > >
 
class  stan::math::internal::ops_partials_edge< double, std::vector< std::vector< var > > >
 
class  stan::math::internal::ops_partials_edge< double, std::vector< var_value< Op > >, require_eigen_t< Op > >
 
class  stan::math::operands_and_partials< Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8, var >
 This class builds partial derivatives with respect to a set of operands. More...
 

Namespaces

namespace  stan
 The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation from C or the boost::math::lgamma implementation.
 
namespace  stan::math
 Matrices and templated mathematical functions.
 
namespace  stan::math::internal
 A comparator that works for any container type that has the brackets operator.
 

Functions

template<typename T1 , typename T2 , require_all_kernel_expressions_and_none_scalar_t< T1, T2 > * = nullptr>
void stan::math::internal::update_adjoints (var_value< T1 > &x, const T2 &y, const vari &z)
 
template<typename T1 , typename T2 , require_all_kernel_expressions_and_none_scalar_t< T1, T2 > * = nullptr>
void stan::math::internal::update_adjoints (var_value< T1 > &x, const T2 &y, const var &z)
 
template<typename Scalar1 , typename Scalar2 , require_var_t< Scalar1 > * = nullptr, require_not_var_matrix_t< Scalar1 > * = nullptr, require_arithmetic_t< Scalar2 > * = nullptr>
void stan::math::internal::update_adjoints (Scalar1 x, Scalar2 y, const vari &z) noexcept
 
template<typename Scalar1 , typename Scalar2 , require_var_t< Scalar1 > * = nullptr, require_not_var_matrix_t< Scalar1 > * = nullptr, require_arithmetic_t< Scalar2 > * = nullptr>
void stan::math::internal::update_adjoints (Scalar1 x, Scalar2 y, const var &z) noexcept
 
template<typename Matrix1 , typename Matrix2 , require_rev_matrix_t< Matrix1 > * = nullptr, require_st_arithmetic< Matrix2 > * = nullptr>
void stan::math::internal::update_adjoints (Matrix1 &x, const Matrix2 &y, const vari &z)
 
template<typename Matrix1 , typename Matrix2 , require_rev_matrix_t< Matrix1 > * = nullptr, require_st_arithmetic< Matrix2 > * = nullptr>
void stan::math::internal::update_adjoints (Matrix1 &x, const Matrix2 &y, const var &z)
 
template<typename Arith , typename Alt , require_st_arithmetic< Arith > * = nullptr>
constexpr void stan::math::internal::update_adjoints (Arith &&, Alt &&, const vari &) noexcept
 
template<typename Arith , typename Alt , require_st_arithmetic< Arith > * = nullptr>
constexpr void stan::math::internal::update_adjoints (Arith &&, Alt &&, const var &) noexcept
 
template<typename StdVec1 , typename Vec2 , require_std_vector_t< StdVec1 > * = nullptr, require_st_arithmetic< Vec2 > * = nullptr>
void stan::math::internal::update_adjoints (StdVec1 &x, const Vec2 &y, const vari &z)
 
template<typename StdVec1 , typename Vec2 , require_std_vector_t< StdVec1 > * = nullptr, require_st_arithmetic< Vec2 > * = nullptr>
void stan::math::internal::update_adjoints (StdVec1 &x, const Vec2 &y, const var &z)