Stan Math Library
4.9.0
Automatic Differentiation
|
#include <stan/math/rev/meta.hpp>
#include <stan/math/rev/fun/is_nan.hpp>
#include <stan/math/rev/fun/value_of.hpp>
#include <stan/math/rev/core/precomputed_gradients.hpp>
#include <stan/math/prim/meta.hpp>
#include <stan/math/prim/err.hpp>
#include <stan/math/prim/fun/constants.hpp>
#include <stan/math/prim/functor/apply.hpp>
#include <stan/math/prim/functor/integrate_1d.hpp>
#include <cmath>
#include <functional>
#include <ostream>
#include <string>
#include <type_traits>
#include <vector>
Go to the source code of this file.
Namespaces | |
namespace | stan |
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation from C or the boost::math::lgamma implementation. | |
namespace | stan::math |
Matrices and templated mathematical functions. | |
Functions | |
template<typename F , typename T_a , typename T_b , typename... Args, require_any_st_fvar< T_a, T_b, Args... > * = nullptr> | |
return_type_t< T_a, T_b, Args... > | stan::math::integrate_1d_impl (const F &f, const T_a &a, const T_b &b, double relative_tolerance, std::ostream *msgs, const Args &... args) |
Return the integral of f from a to b to the given relative tolerance. | |
template<typename F , typename T_a , typename T_b , typename T_theta , require_any_fvar_t< T_a, T_b, T_theta > * = nullptr> | |
return_type_t< T_a, T_b, T_theta > | stan::math::integrate_1d (const F &f, const T_a &a, const T_b &b, const std::vector< T_theta > &theta, const std::vector< double > &x_r, const std::vector< int > &x_i, std::ostream *msgs, const double relative_tolerance) |
Compute the integral of the single variable function f from a to b to within a specified relative tolerance. | |