Automatic Differentiation
 
Loading...
Searching...
No Matches
pareto_lcdf.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_PRIM_PROB_PARETO_LCDF_HPP
2#define STAN_MATH_PRIM_PROB_PARETO_LCDF_HPP
3
19#include <cmath>
20
21namespace stan {
22namespace math {
23
24template <typename T_y, typename T_scale, typename T_shape,
26 T_y, T_scale, T_shape>* = nullptr>
28 const T_scale& y_min,
29 const T_shape& alpha) {
30 using T_partials_return = partials_return_t<T_y, T_scale, T_shape>;
31 using T_y_ref = ref_type_if_not_constant_t<T_y>;
32 using T_y_min_ref = ref_type_if_not_constant_t<T_scale>;
33 using T_alpha_ref = ref_type_if_not_constant_t<T_shape>;
34 using std::isinf;
35 static constexpr const char* function = "pareto_lcdf";
36 check_consistent_sizes(function, "Random variable", y, "Scale parameter",
37 y_min, "Shape parameter", alpha);
38
39 if (size_zero(y, y_min, alpha)) {
40 return 0;
41 }
42
43 T_y_ref y_ref = y;
44 T_y_min_ref y_min_ref = y_min;
45 T_alpha_ref alpha_ref = alpha;
46
47 decltype(auto) y_val = to_ref(as_value_column_array_or_scalar(y_ref));
48 decltype(auto) y_min_val = to_ref(as_value_column_array_or_scalar(y_min_ref));
49 decltype(auto) alpha_val = to_ref(as_value_column_array_or_scalar(alpha_ref));
50
51 check_nonnegative(function, "Random variable", y_val);
52 check_positive_finite(function, "Scale parameter", y_min_val);
53 check_positive_finite(function, "Shape parameter", alpha_val);
54
55 auto ops_partials = make_partials_propagator(y_ref, y_min_ref, alpha_ref);
56
57 // Explicit return for extreme values
58 // The gradients are technically ill-defined, but treated as zero
59 if (sum(promote_scalar<int>(y_val < y_min_val))) {
60 return ops_partials.build(negative_infinity());
61 }
62 if (sum(promote_scalar<int>(isinf(y_val)))) {
63 return ops_partials.build(0.0);
64 }
65
66 const auto& log_quot
67 = to_ref_if<!is_constant_all<T_y, T_scale, T_shape>::value>(
68 log(y_min_val / y_val));
69 const auto& exp_prod
70 = to_ref_if<!is_constant_all<T_y, T_scale, T_shape>::value>(
71 exp(alpha_val * log_quot));
72 // TODO(Andrew) Further simplify derivatives and log1m_exp below
73 T_partials_return P = sum(log1m(exp_prod));
74
76 const auto& common_deriv = to_ref_if<(!is_constant_all<T_y, T_scale>::value
78 exp_prod / (1 - exp_prod));
80 const auto& y_min_inv = inv(y_min_val);
81 auto common_deriv2 = to_ref_if<(!is_constant_all<T_y>::value
83 -alpha_val * y_min_inv * common_deriv);
85 partials<0>(ops_partials) = -common_deriv2 * exp(log_quot);
86 }
88 partials<1>(ops_partials) = std::move(common_deriv2);
89 }
90 }
92 partials<2>(ops_partials) = -common_deriv * log_quot;
93 }
94 }
95
96 return ops_partials.build(P);
97}
98
99} // namespace math
100} // namespace stan
101#endif
require_all_not_t< is_nonscalar_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_not_nonscalar_prim_or_rev_kernel_expression_t
Require none of the types satisfy is_nonscalar_prim_or_rev_kernel_expression.
return_type_t< T_y_cl, T_scale_cl, T_shape_cl > pareto_lcdf(const T_y_cl &y, const T_scale_cl &y_min, const T_shape_cl &alpha)
Returns the Pareto cumulative density function.
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
static constexpr double negative_infinity()
Return negative infinity.
void check_nonnegative(const char *function, const char *name, const T_y &y)
Check if y is non-negative.
bool size_zero(const T &x)
Returns 1 if input is of length 0, returns 0 otherwise.
Definition size_zero.hpp:19
T to_ref_if(T &&a)
No-op that should be optimized away.
Definition to_ref.hpp:29
fvar< T > log(const fvar< T > &x)
Definition log.hpp:18
auto as_value_column_array_or_scalar(T &&a)
Extract the value from an object and for eigen vectors and std::vectors convert to an eigen column ar...
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
ref_type_t< T && > to_ref(T &&a)
This evaluates expensive Eigen expressions.
Definition to_ref.hpp:17
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
Definition sum.hpp:23
fvar< T > log1m(const fvar< T > &x)
Definition log1m.hpp:12
fvar< T > inv(const fvar< T > &x)
Definition inv.hpp:13
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
void check_positive_finite(const char *function, const char *name, const T_y &y)
Check if y is positive and finite.
fvar< T > exp(const fvar< T > &x)
Definition exp.hpp:15
typename ref_type_if<!is_constant< T >::value, T >::type ref_type_if_not_constant_t
Definition ref_type.hpp:62
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
bool isinf(const stan::math::var &a)
Return 1 if the specified argument is positive infinity or negative infinity and 0 otherwise.
Definition std_isinf.hpp:16
Extends std::true_type when instantiated with zero or more template parameters, all of which extend t...