Automatic Differentiation
 
Loading...
Searching...
No Matches
pareto_lccdf.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_PRIM_PROB_PARETO_LCCDF_HPP
2#define STAN_MATH_PRIM_PROB_PARETO_LCCDF_HPP
3
19#include <cmath>
20
21namespace stan {
22namespace math {
23
24template <typename T_y, typename T_scale, typename T_shape,
26 T_y, T_scale, T_shape>* = nullptr>
28 const T_scale& y_min,
29 const T_shape& alpha) {
30 using T_partials_return = partials_return_t<T_y, T_scale, T_shape>;
31 using T_y_ref = ref_type_if_not_constant_t<T_y>;
32 using T_y_min_ref = ref_type_if_not_constant_t<T_scale>;
33 using T_alpha_ref = ref_type_if_not_constant_t<T_shape>;
34 using std::isinf;
35 static constexpr const char* function = "pareto_lccdf";
36 check_consistent_sizes(function, "Random variable", y, "Scale parameter",
37 y_min, "Shape parameter", alpha);
38 if (size_zero(y, y_min, alpha)) {
39 return 0;
40 }
41
42 T_y_ref y_ref = y;
43 T_y_min_ref y_min_ref = y_min;
44 T_alpha_ref alpha_ref = alpha;
45
46 decltype(auto) y_val = to_ref(as_value_column_array_or_scalar(y_ref));
47 decltype(auto) y_min_val = to_ref(as_value_column_array_or_scalar(y_min_ref));
48 decltype(auto) alpha_val = to_ref(as_value_column_array_or_scalar(alpha_ref));
49
50 check_nonnegative(function, "Random variable", y_val);
51 check_positive_finite(function, "Scale parameter", y_min_val);
52 check_positive_finite(function, "Shape parameter", alpha_val);
53
54 auto ops_partials = make_partials_propagator(y_ref, y_min_ref, alpha_ref);
55
56 if (sum(promote_scalar<int>(y_val < y_min_val))) {
57 return ops_partials.build(0.0);
58 }
59 if (sum(promote_scalar<int>(isinf(y_val)))) {
60 return ops_partials.build(negative_infinity());
61 }
62
65 log(y_min_val / y_val));
66
67 T_partials_return P = sum(alpha_val * log_quot);
68
69 size_t N = max_size(y, y_min, alpha);
71 const auto& alpha_div_y_min = to_ref_if<(
73 alpha_val / y_min_val);
75 partials<0>(ops_partials) = -alpha_div_y_min * exp(log_quot);
76 }
78 edge<1>(ops_partials).partials_
79 = alpha_div_y_min * N / max_size(y_min, alpha);
80 }
81 }
84 using Log_quot_scalar = partials_return_t<T_y, T_scale>;
85 using Log_quot_array = Eigen::Array<Log_quot_scalar, Eigen::Dynamic, 1>;
87 edge<2>(ops_partials).partials_
88 = forward_as<Log_quot_array>(std::move(log_quot));
89 } else {
90 partials<2>(ops_partials) = Log_quot_array::Constant(
91 N, 1, forward_as<Log_quot_scalar>(log_quot));
92 }
93 } else {
94 forward_as<internal::broadcast_array<T_partials_return>>(
95 partials<2>(ops_partials))
96 = log_quot * N / max_size(y, y_min);
97 }
98 }
99 return ops_partials.build(P);
100}
101
102} // namespace math
103} // namespace stan
104#endif
require_all_not_t< is_nonscalar_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_not_nonscalar_prim_or_rev_kernel_expression_t
Require none of the types satisfy is_nonscalar_prim_or_rev_kernel_expression.
return_type_t< T_y_cl, T_scale_cl, T_shape_cl > pareto_lccdf(const T_y_cl &y, const T_scale_cl &y_min, const T_shape_cl &alpha)
Returns the Pareto cumulative density function.
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
static constexpr double negative_infinity()
Return negative infinity.
void check_nonnegative(const char *function, const char *name, const T_y &y)
Check if y is non-negative.
bool size_zero(const T &x)
Returns 1 if input is of length 0, returns 0 otherwise.
Definition size_zero.hpp:19
T to_ref_if(T &&a)
No-op that should be optimized away.
Definition to_ref.hpp:29
fvar< T > log(const fvar< T > &x)
Definition log.hpp:18
auto as_value_column_array_or_scalar(T &&a)
Extract the value from an object and for eigen vectors and std::vectors convert to an eigen column ar...
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
ref_type_t< T && > to_ref(T &&a)
This evaluates expensive Eigen expressions.
Definition to_ref.hpp:17
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
Definition sum.hpp:23
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
Definition max_size.hpp:20
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
void check_positive_finite(const char *function, const char *name, const T_y &y)
Check if y is positive and finite.
fvar< T > exp(const fvar< T > &x)
Definition exp.hpp:15
typename ref_type_if<!is_constant< T >::value, T >::type ref_type_if_not_constant_t
Definition ref_type.hpp:62
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
bool isinf(const stan::math::var &a)
Return 1 if the specified argument is positive infinity or negative infinity and 0 otherwise.
Definition std_isinf.hpp:16
If the input type T is either an eigen matrix with 1 column or 1 row at compile time or a standard ve...
Extends std::true_type when instantiated with zero or more template parameters, all of which extend t...