Automatic Differentiation
 
Loading...
Searching...
No Matches
cos.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_PRIM_FUN_COS_HPP
2#define STAN_MATH_PRIM_FUN_COS_HPP
3
10#include <cmath>
11#include <complex>
12
13namespace stan {
14namespace math {
15
23template <typename T, require_arithmetic_t<T>* = nullptr>
24inline auto cos(const T x) {
25 return std::cos(x);
26}
27
35template <typename T, require_complex_bt<std::is_arithmetic, T>* = nullptr>
36inline auto cos(const T x) {
37 return std::cos(x);
38}
39
47struct cos_fun {
48 template <typename T>
49 static inline auto fun(const T& x) {
50 return cos(x);
51 }
52};
53
62template <typename Container, require_ad_container_t<Container>* = nullptr>
63inline auto cos(const Container& x) {
65}
66
75template <typename Container,
77inline auto cos(const Container& x) {
78 return apply_vector_unary<Container>::apply(
79 x, [&](const auto& v) { return v.array().cos(); });
80}
81
82namespace internal {
90template <typename T>
91inline std::complex<T> complex_cos(const std::complex<T>& z) {
92 return cosh(i_times(z));
93}
94} // namespace internal
95
96} // namespace math
97} // namespace stan
98
99#endif
require_t< container_type_check_base< is_container, base_type_t, TypeCheck, Check... > > require_container_bt
Require type satisfies is_container.
std::complex< T > complex_cos(const std::complex< T > &z)
Return the cosine of the complex argument.
Definition cos.hpp:91
std::complex< T > i_times(const std::complex< T > &z)
Return the specified complex number multiplied by i.
Definition i_times.hpp:20
fvar< T > cosh(const fvar< T > &x)
Definition cosh.hpp:16
fvar< T > cos(const fvar< T > &x)
Definition cos.hpp:16
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Base template class for vectorization of unary scalar functions defined by a template class F to a sc...
static auto fun(const T &x)
Definition cos.hpp:49
Structure to wrap cos() so it can be vectorized.
Definition cos.hpp:47