1#ifndef STAN_MATH_PRIM_FUN_ATANH_HPP
2#define STAN_MATH_PRIM_FUN_ATANH_HPP
27template <
typename T, require_arithmetic_t<T>* =
nullptr>
47template <
typename T, require_complex_bt<std::is_arithmetic, T>* =
nullptr>
64 static inline auto fun(
const T& x) {
79template <
typename T, require_ad_container_t<T>* =
nullptr>
94template <
typename Container,
96inline auto atanh(
const Container& x) {
112 auto y = 0.5 * (
log(one + z) -
log(one - z));
require_t< container_type_check_base< is_container, base_type_t, TypeCheck, Check... > > require_container_bt
Require type satisfies is_container.
std::complex< V > complex_atanh(const std::complex< V > &z)
Return the hyperbolic arc tangent of the complex argument.
double copysign(double a, double_d b)
double value_of_rec(const fvar< T > &v)
Return the value of the specified variable.
bool is_nan(T &&x)
Returns 1 if the input's value is NaN and 0 otherwise.
fvar< T > atanh(const fvar< T > &x)
Return inverse hyperbolic tangent of specified value.
void check_bounded(const char *function, const char *name, const T_y &y, const T_low &low, const T_high &high)
Check if the value is between the low and high values, inclusively.
fvar< T > log(const fvar< T > &x)
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Base template class for vectorization of unary scalar functions defined by a template class F to a sc...
static auto fun(const T &x)
Return the inverse hyperbolic tangent of the specified argument.
Structure to wrap atanh() so it can be vectorized.