1#ifndef STAN_MATH_PRIM_FUN_ASIN_HPP
2#define STAN_MATH_PRIM_FUN_ASIN_HPP
26template <
typename T, require_arithmetic_t<T>* =
nullptr>
27inline auto asin(
const T x) {
38template <
typename T, require_complex_bt<std::is_arithmetic, T>* =
nullptr>
39inline auto asin(
const T x) {
52 static inline auto fun(
const T& x) {
65template <
typename Container, require_ad_container_t<Container>* =
nullptr>
66inline auto asin(
const Container& x) {
78template <
typename Container,
80inline auto asin(
const Container& x) {
81 return apply_vector_unary<Container>::apply(
82 x, [](
const auto& v) {
return v.array().
asin(); });
require_t< container_type_check_base< is_container, base_type_t, TypeCheck, Check... > > require_container_bt
Require type satisfies is_container.
std::complex< V > complex_asin(const std::complex< V > &z)
Return the arc sine of the complex argument.
double copysign(double a, double_d b)
double value_of_rec(const fvar< T > &v)
Return the value of the specified variable.
std::complex< T > i_times(const std::complex< T > &z)
Return the specified complex number multiplied by i.
std::complex< T > neg_i_times(const std::complex< T > &z)
Return the specified complex number multiplied by -i.
fvar< T > asinh(const fvar< T > &x)
fvar< T > asin(const fvar< T > &x)
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Base template class for vectorization of unary scalar functions defined by a template class F to a sc...
static auto fun(const T &x)
Structure to wrap asin() so it can be vectorized.