Automatic Differentiation
 
Loading...
Searching...
No Matches
inv_gamma_lpdf.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_OPENCL_PRIM_INV_GAMMA_LPDF_HPP
2#define STAN_MATH_OPENCL_PRIM_INV_GAMMA_LPDF_HPP
3#ifdef STAN_OPENCL
4
14
15namespace stan {
16namespace math {
17
34template <
35 bool propto, typename T_y_cl, typename T_shape_cl, typename T_scale_cl,
37 T_scale_cl>* = nullptr,
38 require_any_not_stan_scalar_t<T_y_cl, T_shape_cl, T_scale_cl>* = nullptr>
40 const T_y_cl& y, const T_shape_cl& alpha, const T_scale_cl& beta) {
41 using std::isfinite;
42 using std::isnan;
43 static constexpr const char* function = "inv_gamma_lpdf(OpenCL)";
45
46 check_consistent_sizes(function, "Random variable", y,
47 "First shape parameter", alpha,
48 "Second shape parameter", beta);
49 const size_t N = max_size(y, alpha, beta);
50 if (N == 0) {
51 return 0.0;
52 }
54 return 0.0;
55 }
56
57 const auto& y_col = as_column_vector_or_scalar(y);
58 const auto& alpha_col = as_column_vector_or_scalar(alpha);
59 const auto& beta_col = as_column_vector_or_scalar(beta);
60
61 const auto& y_val = value_of(y_col);
62 const auto& alpha_val = value_of(alpha_col);
63 const auto& beta_val = value_of(beta_col);
64
65 auto ops_partials = make_partials_propagator(y_col, alpha_col, beta_col);
66
67 auto check_y_not_nan
68 = check_cl(function, "Random variable", y_val, "not NaN");
69 auto y_not_nan = !isnan(y_val);
70 auto check_alpha_pos_finite
71 = check_cl(function, "Shape parameter", alpha_val, "positive finite");
72 auto alpha_pos_finite = alpha_val > 0 && isfinite(alpha_val);
73 auto check_beta_pos_finite
74 = check_cl(function, "Scale parameter", beta_val, "positive finite");
75 auto beta_pos_finite = beta_val > 0 && isfinite(beta_val);
76
77 auto any_y_nonpositive = colwise_max(cast<char>(y_val <= 0));
78 auto log_y = log(y_val);
79 auto log_beta = log(beta_val);
80 auto inv_y = elt_divide(1.0, y_val);
81
82 auto logp1 = static_select<include_summand<propto, T_shape_cl>::value>(
83 -lgamma(alpha_val), constant(0.0, N, 1));
84 auto logp2
85 = static_select<include_summand<propto, T_shape_cl, T_scale_cl>::value>(
86 logp1 + elt_multiply(alpha_val, log_beta), logp1);
87 auto logp3
88 = static_select<include_summand<propto, T_y_cl, T_shape_cl>::value>(
89 logp2 - elt_multiply(alpha_val + 1.0, log_y), logp2);
90 auto logp_expr = colwise_sum(
92 logp3 - elt_multiply(beta_val, inv_y), logp3));
93
94 auto y_deriv
95 = elt_multiply(elt_multiply(beta_val, inv_y) - alpha_val - 1, inv_y);
96 auto alpha_deriv = log_beta - digamma(alpha_val) - log_y;
97 auto beta_deriv = elt_divide(alpha_val, beta_val) - inv_y;
98
99 matrix_cl<char> any_y_nonpositive_cl;
100 matrix_cl<double> logp_cl;
101 matrix_cl<double> y_deriv_cl;
102 matrix_cl<double> alpha_deriv_cl;
103 matrix_cl<double> beta_deriv_cl;
104
105 results(check_alpha_pos_finite, check_beta_pos_finite, check_y_not_nan,
106 any_y_nonpositive_cl, logp_cl, y_deriv_cl, alpha_deriv_cl,
107 beta_deriv_cl)
108 = expressions(alpha_pos_finite, beta_pos_finite, y_not_nan,
109 any_y_nonpositive, logp_expr,
113
114 if (from_matrix_cl(any_y_nonpositive_cl).any()) {
115 return LOG_ZERO;
116 }
117
118 T_partials_return logp = sum(from_matrix_cl(logp_cl));
119
121 partials<0>(ops_partials) = std::move(y_deriv_cl);
122 }
124 partials<1>(ops_partials) = std::move(alpha_deriv_cl);
125 }
127 partials<2>(ops_partials) = std::move(beta_deriv_cl);
128 }
129
130 return ops_partials.build(logp);
131}
132
133} // namespace math
134} // namespace stan
135#endif
136#endif
Represents an arithmetic matrix on the OpenCL device.
Definition matrix_cl.hpp:47
elt_multiply_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_multiply(T_a &&a, T_b &&b)
isfinite_< as_operation_cl_t< T > > isfinite(T &&a)
auto check_cl(const char *function, const char *var_name, T &&y, const char *must_be)
Constructs a check on opencl matrix or expression.
Definition check_cl.hpp:219
results_cl< T_results... > results(T_results &&... results)
Deduces types for constructing results_cl object.
auto as_column_vector_or_scalar(T &&a)
as_column_vector_or_scalar of a kernel generator expression.
elt_divide_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_divide(T_a &&a, T_b &&b)
auto constant(const T a, int rows, int cols)
Matrix of repeated values in kernel generator expressions.
Definition constant.hpp:130
auto colwise_max(T &&a)
Column wise max - reduction of a kernel generator expression.
calc_if_< true, as_operation_cl_t< T > > calc_if(T &&a)
Definition calc_if.hpp:121
auto colwise_sum(T &&a)
Column wise sum - reduction of a kernel generator expression.
expressions_cl< T_expressions... > expressions(T_expressions &&... expressions)
Deduces types for constructing expressions_cl object.
return_type_t< T_y_cl, T_shape_cl, T_scale_cl > inv_gamma_lpdf(const T_y_cl &y, const T_shape_cl &alpha, const T_scale_cl &beta)
The log of an inverse gamma density for y with the specified shape and scale parameters.
auto from_matrix_cl(const T &src)
Copies the source matrix that is stored on the OpenCL device to the destination Eigen matrix.
Definition copy.hpp:61
require_all_t< is_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_prim_or_rev_kernel_expression_t
Require type satisfies is_prim_or_rev_kernel_expression.
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
static constexpr double LOG_ZERO
The natural logarithm of 0, .
Definition constants.hpp:68
constexpr bool any(T x)
Return true if any values in the input are true.
Definition any.hpp:21
T value_of(const fvar< T > &v)
Return the value of the specified variable.
Definition value_of.hpp:18
fvar< T > log(const fvar< T > &x)
Definition log.hpp:18
T1 static_select(T1 &&a, T2 &&b)
Returns one of the arguments that can be of different type, depending on the compile time condition.
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
fvar< T > lgamma(const fvar< T > &x)
Return the natural logarithm of the gamma function applied to the specified argument.
Definition lgamma.hpp:21
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
Definition sum.hpp:23
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
Definition max_size.hpp:20
fvar< T > beta(const fvar< T > &x1, const fvar< T > &x2)
Return fvar with the beta function applied to the specified arguments and its gradient.
Definition beta.hpp:51
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
fvar< T > digamma(const fvar< T > &x)
Return the derivative of the log gamma function at the specified argument.
Definition digamma.hpp:23
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
bool isnan(const stan::math::var &a)
Checks if the given number is NaN.
Definition std_isnan.hpp:18
Metaprogramming struct to detect whether a given type is constant in the mathematical sense (not the ...
Template metaprogram to calculate whether a summand needs to be included in a proportional (log) prob...