Automatic Differentiation
 
Loading...
Searching...
No Matches
inv_chi_square_lpdf.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_OPENCL_PRIM_INV_CHI_SQUARE_LPDF_HPP
2#define STAN_MATH_OPENCL_PRIM_INV_CHI_SQUARE_LPDF_HPP
3#ifdef STAN_OPENCL
4
16
17namespace stan {
18namespace math {
19
40template <
41 bool propto, typename T_y_cl, typename T_dof_cl,
42 require_all_prim_or_rev_kernel_expression_t<T_y_cl, T_dof_cl>* = nullptr,
43 require_any_not_stan_scalar_t<T_y_cl, T_dof_cl>* = nullptr>
45 const T_dof_cl& nu) {
46 using std::isfinite;
47 using std::isnan;
48 static constexpr const char* function = "inv_chi_square_lpdf(OpenCL)";
49 using T_partials_return = partials_return_t<T_y_cl, T_dof_cl>;
50
51 check_consistent_sizes(function, "Random variable", y,
52 "Degrees of freedom parameter", nu);
53 const size_t N = max_size(y, nu);
54 if (N == 0) {
55 return 0.0;
56 }
58 return 0.0;
59 }
60
61 const auto& y_col = as_column_vector_or_scalar(y);
62 const auto& nu_col = as_column_vector_or_scalar(nu);
63
64 const auto& y_val = value_of(y_col);
65 const auto& nu_val = value_of(nu_col);
66
67 auto ops_partials = make_partials_propagator(y_col, nu_col);
68
69 auto check_nu_pos_finite = check_cl(function, "Degrees of freedom parameter",
70 nu_val, "positive finite");
71 auto nu_pos_finite = nu_val > 0 && isfinite(nu_val);
72 auto check_y_not_nan
73 = check_cl(function, "Random variable", y_val, "not NaN");
74 auto y_not_nan = !isnan(y_val);
75
76 auto any_y_nonpositive = colwise_max(cast<char>(y_val <= 0));
77 auto log_y = log(y_val);
78 auto half_nu = nu_val * 0.5;
79 auto two_over_y = elt_divide(0.5, y_val);
80
81 auto logp1 = -elt_multiply(half_nu + 1.0, log_y);
82 auto logp2 = static_select<include_summand<propto, T_dof_cl>::value>(
83 logp1 - nu_val * HALF_LOG_TWO - lgamma(half_nu), logp1);
84 auto logp_expr
86 logp2 - two_over_y, logp2));
87
88 auto y_deriv = elt_divide(two_over_y - half_nu - 1.0, y_val);
89 auto nu_deriv = -HALF_LOG_TWO - (digamma(half_nu) + log_y) * 0.5;
90
91 matrix_cl<char> any_y_nonpositive_cl;
92 matrix_cl<double> logp_cl;
93 matrix_cl<double> y_deriv_cl;
94 matrix_cl<double> nu_deriv_cl;
95
96 results(check_nu_pos_finite, check_y_not_nan, any_y_nonpositive_cl, logp_cl,
97 y_deriv_cl, nu_deriv_cl)
98 = expressions(nu_pos_finite, y_not_nan, any_y_nonpositive, logp_expr,
101
102 if (from_matrix_cl(any_y_nonpositive_cl).any()) {
103 return LOG_ZERO;
104 }
105
106 T_partials_return logp = sum(from_matrix_cl(logp_cl));
107
109 partials<0>(ops_partials) = std::move(y_deriv_cl);
110 }
112 partials<1>(ops_partials) = std::move(nu_deriv_cl);
113 }
114
115 return ops_partials.build(logp);
116}
117
118} // namespace math
119} // namespace stan
120#endif
121#endif
Represents an arithmetic matrix on the OpenCL device.
Definition matrix_cl.hpp:47
elt_multiply_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_multiply(T_a &&a, T_b &&b)
isfinite_< as_operation_cl_t< T > > isfinite(T &&a)
auto check_cl(const char *function, const char *var_name, T &&y, const char *must_be)
Constructs a check on opencl matrix or expression.
Definition check_cl.hpp:219
results_cl< T_results... > results(T_results &&... results)
Deduces types for constructing results_cl object.
auto as_column_vector_or_scalar(T &&a)
as_column_vector_or_scalar of a kernel generator expression.
elt_divide_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_divide(T_a &&a, T_b &&b)
auto colwise_max(T &&a)
Column wise max - reduction of a kernel generator expression.
calc_if_< true, as_operation_cl_t< T > > calc_if(T &&a)
Definition calc_if.hpp:121
auto colwise_sum(T &&a)
Column wise sum - reduction of a kernel generator expression.
expressions_cl< T_expressions... > expressions(T_expressions &&... expressions)
Deduces types for constructing expressions_cl object.
return_type_t< T_y_cl, T_dof_cl > inv_chi_square_lpdf(const T_y_cl &y, const T_dof_cl &nu)
The log of an inverse chi-squared density for y with the specified degrees of freedom parameter.
auto from_matrix_cl(const T &src)
Copies the source matrix that is stored on the OpenCL device to the destination Eigen matrix.
Definition copy.hpp:61
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
static constexpr double LOG_ZERO
The natural logarithm of 0, .
Definition constants.hpp:68
static constexpr double HALF_LOG_TWO
The value of half the natural logarithm 2, .
constexpr bool any(T x)
Return true if any values in the input are true.
Definition any.hpp:21
T value_of(const fvar< T > &v)
Return the value of the specified variable.
Definition value_of.hpp:18
fvar< T > log(const fvar< T > &x)
Definition log.hpp:18
T1 static_select(T1 &&a, T2 &&b)
Returns one of the arguments that can be of different type, depending on the compile time condition.
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
fvar< T > lgamma(const fvar< T > &x)
Return the natural logarithm of the gamma function applied to the specified argument.
Definition lgamma.hpp:21
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
Definition sum.hpp:23
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
Definition max_size.hpp:20
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
fvar< T > digamma(const fvar< T > &x)
Return the derivative of the log gamma function at the specified argument.
Definition digamma.hpp:23
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
bool isnan(const stan::math::var &a)
Checks if the given number is NaN.
Definition std_isnan.hpp:18
Metaprogramming struct to detect whether a given type is constant in the mathematical sense (not the ...
Template metaprogram to calculate whether a summand needs to be included in a proportional (log) prob...