1#ifndef STAN_MATH_OPENCL_PRIM_GAMMA_LPDF_HPP
2#define STAN_MATH_OPENCL_PRIM_GAMMA_LPDF_HPP
41template <
bool propto,
typename T_y_cl,
typename T_shape_cl,
42 typename T_inv_scale_cl,
44 T_y_cl, T_shape_cl, T_inv_scale_cl>* =
nullptr,
46 T_inv_scale_cl>* =
nullptr>
48 const T_y_cl& y,
const T_shape_cl& alpha,
const T_inv_scale_cl&
beta) {
51 static constexpr const char* function =
"gamma_lpdf(OpenCL)";
52 using T_partials_return
56 alpha,
"Inverse scale parameter",
beta);
70 const auto& alpha_val =
value_of(alpha_col);
71 const auto& beta_val =
value_of(beta_col);
74 =
check_cl(function,
"Random variable", y_val,
"not NaN");
75 auto y_not_nan_expr = y_val > 0 &&
isfinite(y_val);
76 auto check_alpha_pos_finite
77 =
check_cl(function,
"Shape parameter", alpha_val,
"positive finite");
78 auto alpha_pos_finite_expr = alpha_val > 0 &&
isfinite(alpha_val);
79 auto check_beta_pos_finite =
check_cl(function,
"Inverse scale parameter",
80 beta_val,
"positive finite");
81 auto beta_pos_finite_expr = beta_val > 0 &&
isfinite(beta_val);
83 auto any_y_negative_expr =
colwise_max(cast<char>(y_val < 0));
84 auto log_y_expr =
log(y_val);
85 auto log_beta_expr =
log(beta_val);
86 auto logp1_expr = static_select<include_summand<propto, T_shape_cl>::value>(
90 logp1_expr +
elt_multiply(alpha_val, log_beta_expr), logp1_expr);
92 = static_select<include_summand<propto, T_y_cl, T_shape_cl>::value>(
93 logp2_expr +
elt_multiply(alpha_val - 1.0, log_y_expr), logp2_expr);
96 logp3_expr -
elt_multiply(beta_val, y_val), logp3_expr));
98 auto y_deriv_expr =
elt_divide(alpha_val - 1, y_val) - beta_val;
99 auto alpha_deriv_expr = log_beta_expr + log_y_expr -
digamma(alpha_val);
100 auto beta_deriv_expr =
elt_divide(alpha_val, beta_val) - y_val;
108 results(check_y_not_nan, check_alpha_pos_finite, check_beta_pos_finite,
109 any_y_negative_cl, logp_cl, y_deriv_cl, alpha_deriv_cl, beta_deriv_cl)
111 y_not_nan_expr, alpha_pos_finite_expr, beta_pos_finite_expr,
112 any_y_negative_expr, logp_expr,
125 partials<0>(ops_partials) = std::move(y_deriv_cl);
128 partials<1>(ops_partials) = std::move(alpha_deriv_cl);
131 partials<2>(ops_partials) = std::move(beta_deriv_cl);
134 return ops_partials.build(logp);
Represents an arithmetic matrix on the OpenCL device.
elt_multiply_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_multiply(T_a &&a, T_b &&b)
isfinite_< as_operation_cl_t< T > > isfinite(T &&a)
auto check_cl(const char *function, const char *var_name, T &&y, const char *must_be)
Constructs a check on opencl matrix or expression.
results_cl< T_results... > results(T_results &&... results)
Deduces types for constructing results_cl object.
auto as_column_vector_or_scalar(T &&a)
as_column_vector_or_scalar of a kernel generator expression.
elt_divide_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_divide(T_a &&a, T_b &&b)
auto constant(const T a, int rows, int cols)
Matrix of repeated values in kernel generator expressions.
auto colwise_max(T &&a)
Column wise max - reduction of a kernel generator expression.
calc_if_< true, as_operation_cl_t< T > > calc_if(T &&a)
auto colwise_sum(T &&a)
Column wise sum - reduction of a kernel generator expression.
expressions_cl< T_expressions... > expressions(T_expressions &&... expressions)
Deduces types for constructing expressions_cl object.
return_type_t< T_y_cl, T_shape_cl, T_inv_scale_cl > gamma_lpdf(const T_y_cl &y, const T_shape_cl &alpha, const T_inv_scale_cl &beta)
The log of a gamma density for y with the specified shape and inverse scale parameters.
auto from_matrix_cl(const T &src)
Copies the source matrix that is stored on the OpenCL device to the destination Eigen matrix.
require_all_t< is_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_prim_or_rev_kernel_expression_t
Require type satisfies is_prim_or_rev_kernel_expression.
require_any_not_t< is_stan_scalar< std::decay_t< Types > >... > require_any_not_stan_scalar_t
Require at least one of the types do not satisfy is_stan_scalar.
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
static constexpr double LOG_ZERO
The natural logarithm of 0, .
constexpr bool any(T x)
Return true if any values in the input are true.
T value_of(const fvar< T > &v)
Return the value of the specified variable.
fvar< T > log(const fvar< T > &x)
T1 static_select(T1 &&a, T2 &&b)
Returns one of the arguments that can be of different type, depending on the compile time condition.
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
fvar< T > lgamma(const fvar< T > &x)
Return the natural logarithm of the gamma function applied to the specified argument.
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
fvar< T > beta(const fvar< T > &x1, const fvar< T > &x2)
Return fvar with the beta function applied to the specified arguments and its gradient.
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
fvar< T > digamma(const fvar< T > &x)
Return the derivative of the log gamma function at the specified argument.
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
bool isnan(const stan::math::var &a)
Checks if the given number is NaN.
Metaprogramming struct to detect whether a given type is constant in the mathematical sense (not the ...
Template metaprogram to calculate whether a summand needs to be included in a proportional (log) prob...