Automatic Differentiation
 
Loading...
Searching...
No Matches
double_exponential_lpdf.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_OPENCL_PRIM_DOUBLE_EXPONENTIAL_LPDF_HPP
2#define STAN_MATH_OPENCL_PRIM_DOUBLE_EXPONENTIAL_LPDF_HPP
3#ifdef STAN_OPENCL
4
13
14namespace stan {
15namespace math {
16
31template <
32 bool propto, typename T_y_cl, typename T_loc_cl, typename T_scale_cl,
34 T_scale_cl>* = nullptr,
35 require_any_not_stan_scalar_t<T_y_cl, T_loc_cl, T_scale_cl>* = nullptr>
37 const T_y_cl& y, const T_loc_cl& mu, const T_scale_cl& sigma) {
38 static constexpr const char* function = "double_exponential_lpdf(OpenCL)";
40 using std::isfinite;
41
42 check_consistent_sizes(function, "Random variable", y, "Location parameter",
43 mu, "Shape parameter", sigma);
44 const size_t N = max_size(y, mu, sigma);
45 if (N == 0) {
46 return 0.0;
47 }
49 return 0.0;
50 }
51
52 const auto& y_col = as_column_vector_or_scalar(y);
53 const auto& mu_col = as_column_vector_or_scalar(mu);
54 const auto& sigma_col = as_column_vector_or_scalar(sigma);
55
56 const auto& y_val = value_of(y_col);
57 const auto& mu_val = value_of(mu_col);
58 const auto& sigma_val = value_of(sigma_col);
59
60 auto check_y_finite = check_cl(function, "Random variable", y_val, "finite");
61 auto y_finite_expr = isfinite(y_val);
62 auto check_mu_finite
63 = check_cl(function, "Location parameter", mu_val, "finite");
64 auto mu_finite_expr = isfinite(mu_val);
65 auto check_sigma_positive_finite
66 = check_cl(function, "Scale parameter", sigma_val, "positive finite");
67 auto sigma_positive_finite_expr = sigma_val > 0 && isfinite(sigma_val);
68
69 auto inv_sigma_expr = elt_divide(1.0, sigma_val);
70 auto y_m_mu_expr = y_val - mu_val;
71 auto abs_diff_y_mu_expr = fabs(y_m_mu_expr);
72 auto scaled_diff_expr = elt_multiply(abs_diff_y_mu_expr, inv_sigma_expr);
73
74 auto logp_expr
76 scaled_diff_expr + log(sigma_val), scaled_diff_expr));
77 auto rep_deriv_expr = elt_multiply(sign(y_m_mu_expr), inv_sigma_expr);
78 auto sigma_deriv_expr = elt_multiply(inv_sigma_expr, scaled_diff_expr - 1);
79
80 matrix_cl<double> logp_cl;
81 matrix_cl<double> y_deriv_cl;
82 matrix_cl<double> mu_deriv_cl;
83 matrix_cl<double> sigma_deriv_cl;
84 results(check_y_finite, check_mu_finite, check_sigma_positive_finite, logp_cl,
85 y_deriv_cl, mu_deriv_cl, sigma_deriv_cl)
86 = expressions(y_finite_expr, mu_finite_expr, sigma_positive_finite_expr,
87 logp_expr, -rep_deriv_expr, rep_deriv_expr,
88 sigma_deriv_expr);
89
90 T_partials_return logp = sum(from_matrix_cl(logp_cl));
92 logp -= N * LOG_TWO;
93 }
94 auto ops_partials = make_partials_propagator(y_col, mu_col, sigma_col);
95
97 partials<0>(ops_partials) = std::move(y_deriv_cl);
98 }
100 partials<1>(ops_partials) = std::move(mu_deriv_cl);
101 }
103 partials<2>(ops_partials) = std::move(sigma_deriv_cl);
104 }
105
106 return ops_partials.build(logp);
107}
108
109} // namespace math
110} // namespace stan
111
112#endif
113#endif
Represents an arithmetic matrix on the OpenCL device.
Definition matrix_cl.hpp:47
elt_multiply_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_multiply(T_a &&a, T_b &&b)
isfinite_< as_operation_cl_t< T > > isfinite(T &&a)
auto check_cl(const char *function, const char *var_name, T &&y, const char *must_be)
Constructs a check on opencl matrix or expression.
Definition check_cl.hpp:219
results_cl< T_results... > results(T_results &&... results)
Deduces types for constructing results_cl object.
auto as_column_vector_or_scalar(T &&a)
as_column_vector_or_scalar of a kernel generator expression.
elt_divide_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_divide(T_a &&a, T_b &&b)
auto colwise_sum(T &&a)
Column wise sum - reduction of a kernel generator expression.
expressions_cl< T_expressions... > expressions(T_expressions &&... expressions)
Deduces types for constructing expressions_cl object.
return_type_t< T_y_cl, T_loc_cl, T_scale_cl > double_exponential_lpdf(const T_y_cl &y, const T_loc_cl &mu, const T_scale_cl &sigma)
Returns the double exponential log probability density function.
auto from_matrix_cl(const T &src)
Copies the source matrix that is stored on the OpenCL device to the destination Eigen matrix.
Definition copy.hpp:61
require_all_t< is_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_prim_or_rev_kernel_expression_t
Require type satisfies is_prim_or_rev_kernel_expression.
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
auto sign(const T &x)
Returns signs of the arguments.
Definition sign.hpp:18
T value_of(const fvar< T > &v)
Return the value of the specified variable.
Definition value_of.hpp:18
fvar< T > log(const fvar< T > &x)
Definition log.hpp:18
static constexpr double LOG_TWO
The natural logarithm of 2, .
Definition constants.hpp:80
T1 static_select(T1 &&a, T2 &&b)
Returns one of the arguments that can be of different type, depending on the compile time condition.
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
Definition sum.hpp:23
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
Definition max_size.hpp:20
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
fvar< T > fabs(const fvar< T > &x)
Definition fabs.hpp:16
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Metaprogramming struct to detect whether a given type is constant in the mathematical sense (not the ...
Template metaprogram to calculate whether a summand needs to be included in a proportional (log) prob...